Moving coil galvanometre is a device which is used to detect current in a curcuit.
The lamp and scale arrangement in a ballistic galvanometer is placed at a distance of 1 meter to ensure that the deflection of the galvanometer caused by the current pulse is accurately measured. Placing it at this distance allows for the angular displacement of the galvanometer's coil to be proportional to the charge passing through it, aiding in the precise measurement of the current pulse's magnitude.
a ballistic galvanometer is a specially designed galvanometer suitable for measuring the total quantity of electricity or charge displaced by a varying current of short duration such as charging & discharging of a capacitor >>>>
When current is passed throgh a galvanometer, the coil oscillates about its mean position before it comes to rest. To bring the coil to rest immediately, the coil is wound on a metallic frame. Now, when the coil oscillate, eddy currents are set up in the metallic frame, which opposes further oscillations of the coil. This inturn enables the coil to attain its equilibrium position almost instantly. Since the oscillation of the coil die out instantaneously, the galvanometer is called dead beat galvanometer.
"An ohmmeter is an electrical instrument that measures electrical resistance, the opposition to an electric current."The unit of measurement for resistance is ohms (Ω).It is useful device for rapid measurement of resistance. It is consist of galvanometer and adjustable resistance Rs of known value and a cell connected in series. The resistance R to be measured is connected between the terminals.The series resistance Rs is so adjusted that when the terminals are short circuited i.e., when R = 0, the galvanometer gives full scale deflection. So the extreme graduation of the usual scale the galvanometer is marked 0 for resistance measurement. When terminals are not joined no current passes through the galvanometer and its deflection will be zero . Thus zero of the scale marked as infinity. . When R is not infinite , the galvanometer deflects to some intermediate point depending on the value of R scale can be calibrated to read the resistance directly.
The two main types of electrodynamometer are attracted disc type and moving coil type. In the attracted disc type, two stationary coils create a magnetic field that attracts a disc attached to the moving coil. In the moving coil type, the coil is suspended between stationary magnets and experiences a force when current flows through it.
What is the difference between the construction of a moving coil galvanometer and a ballistic galvanometer?
The lamp and scale arrangement in a ballistic galvanometer is placed at a distance of 1 meter to ensure that the deflection of the galvanometer caused by the current pulse is accurately measured. Placing it at this distance allows for the angular displacement of the galvanometer's coil to be proportional to the charge passing through it, aiding in the precise measurement of the current pulse's magnitude.
a series resistence with its coil
Some disadvantages of a moving coil galvanometer include its limited range of measurement due to its delicate construction, susceptibility to external magnetic fields which can affect accuracy, and the need for calibration to ensure reliable readings. Additionally, the moving coil galvanometer may have a slow response time compared to other types of meters.
It should deflect to the left (negative) based on the experiment I did a few days ago in lab but I could be wrong. ============================= Doesn't that depend on which end of the coil goes to which end of the meter ?? After you finished the experiment and made note of the meter's deflection, you could leave everything exactly as it is, but get up, walk around to the other side of the table with the magnet, insert the S-pole into the other side of the coil, and I guarantee the meter would deflect in the opposite direction. The configuration is not adequately specified in the question.
The device that turns a needle in a galvanometer is called a coil. The coil generates a magnetic field when current flows through it, which interacts with the magnetic field produced by the permanent magnet in the galvanometer to cause the needle to deflect.
A cylindrical core of soft iron is used in a moving coil galvanometer because soft iron has high magnetic permeability, meaning it enhances the magnetic field produced by the coil. This helps increase the sensitivity and responsiveness of the galvanometer to small currents passing through the coil.
a ballistic galvanometer is a specially designed galvanometer suitable for measuring the total quantity of electricity or charge displaced by a varying current of short duration such as charging & discharging of a capacitor >>>>
When current is passed throgh a galvanometer, the coil oscillates about its mean position before it comes to rest. To bring the coil to rest immediately, the coil is wound on a metallic frame. Now, when the coil oscillate, eddy currents are set up in the metallic frame, which opposes further oscillations of the coil. This inturn enables the coil to attain its equilibrium position almost instantly. Since the oscillation of the coil die out instantaneously, the galvanometer is called dead beat galvanometer.
Yes.
A weston galvanometer is a type of sensitive instrument used to detect and measure small electric currents. It uses a moving coil suspended in a magnetic field to deflect in response to the current passing through it. This deflection is then used to indicate the strength of the current.
A ballistic galvanometer is used by electricians to measure an electric current. It is commonly used to test whether or not an electric current is present. A ballistic galvanometer consists of a meter that is attached to two probes, one positively charged and one negatively charged. This keeps the user from being electrocuted when an electric charge is present.