An example of a heterozygous chromosome is having one chromosome with a dominant allele and the other with a recessive allele for a particular gene. This can lead to different traits expressed depending on the dominant or recessive nature of the alleles.
A chromosome can have both dominant and recessive genes for a specific trait, but only one gene will be expressed in an individual. The dominant gene will be expressed over the recessive gene in a heterozygous individual. This is known as the principle of dominance in genetics.
Yes, a sex-linked allele can be dominant. For example, if a gene on the X chromosome is dominant, females who inherit the allele will express the trait, while males only need one copy of the dominant allele to show the trait since they have only one X chromosome.
Klinefelter Syndrome is neither recessive or dominant. It is a chormosome disorder, and is thus not passed down from generation to generation. The disorder is a random even that occurs.
The mother typically donates an X sex chromosome to her offspring. This is because females have two X chromosomes, and during reproduction, one of these X chromosomes is passed on to the offspring, determining the sex.
An example of a heterozygous chromosome is having one chromosome with a dominant allele and the other with a recessive allele for a particular gene. This can lead to different traits expressed depending on the dominant or recessive nature of the alleles.
An allele on either X or Y could be dominant over the allele on the other chromosome, but it is more common for the allele on the X to be dominant, because the Y chromosome is much smaller than the X and contains fewer genes. In many cases, there is no allele for a particular gene on the Y chromosome; so whatever allele is on the Y will be dominant.
Hunter's disease is inherited in an X-linked recessive pattern. This means the mutated gene that causes the disease is located on the X chromosome, and males are more commonly affected because they only have one X chromosome. Females can carry the mutated gene but are typically unaffected due to having a second X chromosome that can compensate.
A chromosome can have both dominant and recessive genes for a specific trait, but only one gene will be expressed in an individual. The dominant gene will be expressed over the recessive gene in a heterozygous individual. This is known as the principle of dominance in genetics.
Down syndrome is neither caused by dominant or recessive chromosomes it is simply caused by an error in the translation process of chromosome 21.
Yes, a sex-linked allele can be dominant. For example, if a gene on the X chromosome is dominant, females who inherit the allele will express the trait, while males only need one copy of the dominant allele to show the trait since they have only one X chromosome.
false
dominant genes
nondisjunction
Down syndrome is neither dominant nor recessive. Actually, it is considered to be an "autosomal" trait. This occurs when there is damage to the chromosome.
In males, they only have one X chromosome, so if they inherit a recessive allele for a certain trait on their X chromosome, it will be expressed because there is no corresponding dominant allele on the Y chromosome to mask it. Females have two X chromosomes, so even if they inherit a recessive allele on one X chromosome, the dominant allele on the other X chromosome can mask its expression.
Klinefelter Syndrome is neither recessive or dominant. It is a chormosome disorder, and is thus not passed down from generation to generation. The disorder is a random even that occurs.