answersLogoWhite

0


Best Answer

bevel gears are used for power transmitting between the shafts which intersect at some angel ( usually right angel) , but the spur gear is used for shafts which are parallel and coplanar.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

9y ago

In the helical gear, the length of the contact teeth is more than straight gear.so the chances of slippage are less.

For all heavy load transfer,helical gears are used.

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

The contact ratio in helical gears is higher than in spur gears. Also, the pressure angle may be higher as well.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why are helical gears more favourable than spur gears?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Mechanical Engineering

State two reasons why helical gears are more favourable in a vehicle transmission than straight-cut spur gears?

Far more driving surface contact and easier gear selection.


What is gear backlash?

Backlash can be defined as a rotational arc clearance formed between a pair of mounted gears. A backlash (clearance) is crucial to any Gear set for checking the damages caused by the gear tooth interference. Lack of backlash causes the following problems: * Noise * Overloading * Overheating of gears and bearings * Seizing and failure Backlash amount gets measured by limiting the rotation of one member, that generally is the pinion, while measuring the other component's rotational movement at a reference radius. Backlash is usually defined in arc degrees (min/sec). The arc movement measurement thus obtained is converted to degrees by applying the following equation:Backlash (degrees) = Arc Movement (inches) x 57.296/Radius (inches)The following table gives the American Gear Manufacturer's Association specified Backlash range for Coarse pitch Spur, Helical and Herringbone type of gears.


Who invented the first spur gear?

everyone one shold know that while being the terminator Arnold swartzinator(aka the govinator) invent the spur gear while acting.


What is the employment outlook for mechanical engineers?

Employment of engineers is expected to grow about as fast as the average for all occupations over the next decade, but growth will vary by specialty. Environmental engineers should experience the fastest growth, while civil engineers should see the largest employment increase. Overall job opportunities in engineering are expected to be good. Overall employment change.Overall engineering employment is expected to grow by 11 percent over the 2006-16 decade, about as fast as the average for all occupations. Engineers have traditionally been concentrated in slower growing or declining manufacturing industries, in which they will continue to be needed to design, build, test, and improve manufactured products. However, increasing employment of engineers in faster growing service industries should generate most of the employment growth. Job outlook varies by engineering specialty, as discussed later. Competitive pressures and advancing technology will force companies to improve and update product designs and to optimize their manufacturing processes. Employers will rely on engineers to increase productivity and expand output of goods and services. New technologies continue to improve the design process, enabling engineers to produce and analyze various product designs much more rapidly than in the past. Unlike in some other occupations, however, technological advances are not expected to substantially limit employment opportunities in engineering because engineers will continue to develop new products and processes that increase productivity. Offshoring of engineering work will likely dampen domestic employment growth to some degree. There are many well-trained, often English-speaking engineers available around the world willing to work at much lower salaries than U.S. engineers. The rise of the Internet has made it relatively easy for part of the engineering work previously done by engineers in this country to be done by engineers in other countries, a factor that will tend to hold down employment growth. Even so, there will always be a need for onsite engineers to interact with other employees and clients. Overall job outlook. Overall job opportunities in engineering are expected to be good because the number of engineering graduates should be in rough balance with the number of job openings between 2006 and 2016. In addition to openings from job growth, many openings will be created by the need to replace current engineers who retire; transfer to management, sales, or other occupations; or leave engineering for other reasons. Many engineers work on long-term research and development projects or in other activities that continue even during economic slowdowns. In industries such as electronics and aerospace, however, large cutbacks in defense expenditures and in government funding for research and development have resulted in significant layoffs of engineers in the past. The trend toward contracting for engineering work with engineering services firms, both domestic and foreign, has also made engineers more vulnerable to layoffs during periods of lower demand. It is important for engineers, as it is for workers in other technical and scientific occupations, to continue their education throughout their careers because much of their value to their employer depends on their knowledge of the latest technology. Engineers in high-technology areas, such as biotechnology or information technology, may find that technical knowledge becomes outdated rapidly. By keeping current in their field, engineers are able to deliver the best solutions and greatest value to their employers. Engineers who have not kept current in their field may find themselves at a disadvantage when seeking promotions or during layoffs. Employment change and job outlook by engineering specialty. Aerospace engineers are expected to have 10 percent growth in employment over the projections decade, about as fast as the average for all occupations. Increases in the number and scope of military aerospace projects likely will generate new jobs. In addition, new technologies expected to be used on commercial aircraft produced during the next decade should spur demand for aerospace engineers. The employment outlook for aerospace engineers appears favorable. The number of degrees granted in aerospace engineering has declined for many years because of a perceived lack of opportunities in this field. Although this trend has reversed, new graduates continue to be needed to replace aerospace engineers who retire or leave the occupation for other reasons. Agricultural engineers are expected to have employment growth of 9 percent over the projections decade, about as fast as the average for all occupations. More engineers will be needed to meet the increasing demand for using biosensors to determine the optimal treatment of crops. Employment growth should also result from the need to increase crop yields to feed an expanding population and produce crops used as renewable energy sources. Moreover, engineers will be needed to develop more efficient agricultural production and conserve resources. Biomedical engineers are expected to have 21 percent employment growth over the projections decade, much faster than the average for all occupations. The aging of the population and the focus on health issues will drive demand for better medical devices and equipment designed by biomedical engineers. Along with the demand for more sophisticated medical equipment and procedures, an increased concern for cost-effectiveness will boost demand for biomedical engineers, particularly in pharmaceutical manufacturing and related industries. However, because of the growing interest in this field, the number of degrees granted in biomedical engineering has increased greatly. Biomedical engineers, particularly those with only a bachelor's degree, may face competition for jobs. Unlike many other engineering specialties, a graduate degree is recommended or required for many entry-level jobs. Chemical engineers are expected to have employment growth of 8 percent over the projections decade, about as fast as the average for all occupations. Although overall employment in the chemical manufacturing industry is expected to decline, chemical companies will continue to research and develop new chemicals and more efficient processes to increase output of existing chemicals. Among manufacturing industries, pharmaceuticals may provide the best opportunities for jobseekers. However, most employment growth for chemical engineers will be in service-providing industries such as professional, scientific, and technical services, particularly for research in energy and the developing fields of biotechnology and nanotechnology. Civil engineers are expected to experience 18 percent employment growth during the projections decade, faster than the average for all occupations. Spurred by general population growth and the related need to improve the Nation's infrastructure, more civil engineers will be needed to design and construct or expand transportation, water supply, and pollution control systems and buildings and building complexes. They also will be needed to repair or replace existing roads, bridges, and other public structures. Because construction industries and architectural, engineering and related services employ many civil engineers, employment opportunities will vary by geographic area and may decrease during economic slowdowns, when construction is often curtailed. Computer hardware engineers are expected to have 5 percent employment growth over the projections decade, slower than the average for all occupations. Although the use of information technology continues to expand rapidly, the manufacture of computer hardware is expected to be adversely affected by intense foreign competition. As computer and semiconductor manufacturers contract out more of their engineering needs to both domestic and foreign design firms, much of the growth in employment of hardware engineers is expected in the computer systems design and related services industry. Electrical engineers are expected to have employment growth of 6 percent over the projections decade, slower than the average for all occupations. Although strong demand for electrical devices-including electric power generators, wireless phone transmitters, high-density batteries, and navigation systems-should spur job growth, international competition and the use of engineering services performed in other countries will limit employment growth. Electrical engineers working in firms providing engineering expertise and design services to manufacturers should have better job prospects. Electronics engineers, except computer are expected to have employment growth of 4 percent during the projections decade, slower than the average for all occupations. Although rising demand for electronic goods-including communications equipment, defense-related equipment, medical electronics, and consumer products-should continue to increase demand for electronics engineers, foreign competition in electronic products development and the use of engineering services performed in other countries will limit employment growth. Growth is expected to be fastest in service-providing industries-particularly in firms that provide engineering and design services. Environmental engineers should have employment growth of 25 percent during the projections decade, much faster than the average for all occupations. More environmental engineers will be needed to comply with environmental regulations and to develop methods of cleaning up existing hazards. A shift in emphasis toward preventing problems rather than controlling those that already exist, as well as increasing public health concerns resulting from population growth, also are expected to spur demand for environmental engineers. Because of this employment growth, job opportunities should be good even as more students earn degrees. Even though employment of environmental engineers should be less affected by economic conditions than most other types of engineers, a significant economic downturn could reduce the emphasis on environmental protection, reducing job opportunities. Health and safety engineers, except mining safety engineers and inspectors are projected to experience 10 percent employment growth over the projections decade, about as fast as the average for all occupations. Because health and safety engineers make production processes and products as safe as possible, their services should be in demand as concern increases for health and safety within work environments. As new technologies for production or processing are developed, health and safety engineers will be needed to ensure that they are safe. Industrial engineers are expected to have employment growth of 20 percent over the projections decade, faster than the average for all occupations. As firms look for new ways to reduce costs and raise productivity, they increasingly will turn to industrial engineers to develop more efficient processes and reduce costs, delays, and waste. This should lead to job growth for these engineers, even in manufacturing industries with slowly growing or declining employment overall. Because their work is similar to that done in management occupations, many industrial engineers leave the occupation to become managers. Many openings will be created by the need to replace industrial engineers who transfer to other occupations or leave the labor force. Marine engineers and naval architects are expected to experience employment growth of 11 percent over the projections decade, about as fast as the average for all occupations. Strong demand for naval vessels and recreational small craft should more than offset the long-term decline in the domestic design and construction of large oceangoing vessels. Good prospects are expected for marine engineers and naval architects because of growth in employment, the need to replace workers who retire or take other jobs, and the limited number of students pursuing careers in this occupation. Materials engineers are expected to have employment growth of 4 percent over the projections decade, slower than the average for all occupations. Although employment is expected to decline in many of the manufacturing industries in which materials engineers are concentrated, growth should be strong for materials engineers working on nanomaterials and biomaterials. As manufacturing firms contract for their materials engineering needs, employment growth is expected in professional, scientific, and technical services industries also. Mechanical engineers are projected to have 4 percent employment growth over the projections decade, slower than the average for all occupations. This is because total employment in manufacturing industries-in which employment of mechanical engineers is concentrated-is expected to decline. Some new job opportunities will be created due to emerging technologies in biotechnology, materials science, and nanotechnology. Additional opportunities outside of mechanical engineering will exist because the skills acquired through earning a degree in mechanical engineering often can be applied in other engineering specialties. Mining and geological engineers, including mining safety engineers are expected to have 10 percent employment growth over the projections decade, about as fast as the average for all occupations. Following a lengthy period of decline, strong growth in demand for minerals and increased use of mining engineers in the oil and gas extraction industry is expected to create some employment growth over the 2006-16 period. Moreover, many mining engineers currently employed are approaching retirement age, a factor that should create additional job openings. Furthermore, relatively few schools offer mining engineering programs, resulting in good job opportunities for graduates. The best opportunities may require frequent travel or even living overseas for extended periods of time as mining operations around the world recruit graduates of U.S. mining engineering programs. Nuclear engineers are expected to have employment growth of 7 percent over the projections decade, about as fast as the average for all occupations. Most job growth will be in research and development and engineering services. Although no commercial nuclear power plants have been built in the United States for many years, nuclear engineers will be needed to operate existing plants and design new ones, including researching future nuclear power sources. They also will be needed to work in defense-related areas, to develop nuclear medical technology, and to improve and enforce waste management and safety standards. Nuclear engineers are expected to have good employment opportunities because the small number of nuclear engineering graduates is likely to be in rough balance with the number of job openings. Petroleum engineers are expected to have 5 percent employment growth over the projections decade, more slowly than the average for all occupations. Even though most of the potential petroleum-producing areas in the United States already have been explored, petroleum engineers will increasingly be needed to develop new methods of extracting more resources from existing sources. Favorable opportunities are expected for petroleum engineers because the number of job openings is likely to exceed the relatively small number of graduates. Petroleum engineers work around the world and, in fact, the best employment opportunities may include some work in other countries. For the source and more detailed information concerning your request, click on the related links section indicated below.


What is the mechanical engineering syllabus for isro exam?

Mechanical Syllabus for ISRO Scientist Exam1. ENGINEERING MATHEMATICSLinear Algebra: Algebra of matrices, system of linear equations, eigenvalues and eigenvectors.Calculus: Taylor Series, Fourier Series, partial derivatives, total derivatives, definite and improper integrals, multiple integrals.Vector Calculus: Gradient, divergence and curl, line and surface integrals, Green, Gauss and Stokes' theorems.Differential Equations: Linear ODE's, first order non-linear ODE's, initial and boundary value problems, Laplace transform, PDE's-Laplace, wave and diffusion equations.Numerical Methods: Solution of system of linear equations, interpolation, numerical integration, Newton-Raphson method, Runge-Kutta method.Probability & Statistics: Gaussian, Weibul distribution and their properties, method of least squares, regression analysis, analysis of variance.2. APPLIED MECHANICS AND DESIGNEngineering Mechanics: Equivalent force systems, free-body concepts, equations of equilibrium, trusses and frames, virtual work and minimum potential energy. Kinematics and dynamics of particles and rigid bodies, impulse and momentum (linear and angular), energy methods, central force motion.Strength of Materials: Stress and strain, stress-strain relationship and elastic constants, Mohr's circle for plane stress and plane strain, shear force and bending moment diagrams, bending and shear stresses, deflection of beams torsion of circular shafts, thin and thick cylinders, Euler's theory of columns, strain energy methods, thermal stresses.Theory of Machines: Displacement, velocity and acceleration, analysis of plane mechanisms, dynamic analysis of slider-crank mechanism, planar cams and followers, gear tooth profiles, kinematics and design of gears, governors and flywheels, balancing of reciprocating and rotating masses.Vibrations: Free and forced vibration of single degree freedom systems, effect of damping, vibration isolation, resonance, critical speed of rotors.Design of Machine Elements: Design for static and dynamic loading, failure theories, fatigue strength; design of bolted, riveted and welded joints; design of shafts and keys; design of spur gears, rolling and sliding contact bearings; brakes and clutches; belt, ropes and chain drives.3. FLUID MECHANICS AND THERMAL SCIENCESFluid Mechanics: Fluid properties, fluid statics, manometry, buoyancy; Control-volume analysis of mass, momentum and energy, fluid acceleration; Differential equation of continuity and momentum; Bernoulli's equation; Viscous flow of incompressible fluids; Boundary layer, Elementary turbulent flow; Flow through pipes, head losses in pipes, bends etc.Heat-Transfer: Modes of heat transfer; One dimensional heat conduction, resistance concept, electrical analogy, unsteady heat conduction, fins; Dimensionless parameters in free and forced convective heat transfer, Various correlations for heat transfer in flow over flat plates and through pipes; Thermal boundary layer; effect of turbulence; Radiative heat transfer, black and grey surfaces, shape factors, network analysis; Heat exchanger performance, LMTD and NTU methods.Thermodynamics: Zeroth, First and Second laws of thermodynamics; Thermodynamic system and processes; Irreversibility and availability; Behaviour of ideal and real gases, Properties of pure substances, calculation of work and heat in ideal processes; Analysis of thermodynamic cycles related to energy conversion; Carnot, Rankine, Otto, Diesel, Brayton and Vapour compression cycles.Power Plant Engineering: Steam generators; Steam power cycles; Steam turbines; impulse and reaction principles, velocity diagrams, pressure and velocity compounding; Reheating and reheat factor; Condensers and feed heaters.I.C. Engines: Requirements and suitability of fuels in IC engines, fuel ratings, fuel-air mixture requirements; Normal combustion in SI and CI engines; Engine performance calculations.Refrigeration and air-conditioning: Refrigerant compressors, expansion devices, condensers and evaporators; Properties of moist air, psychrometric chart, basic psychometric processes.Turbomachinery: Components of gas turbines; Compression processes, Centrifugal and Axial flow compressors; Axial flow turbines, elementary theory; Hydraulic turbines; Euler-Turbine equation; Specific speed, Pelton-wheel, Francis and Kaplan turbines; Centrifugal pumps.4. MANUFACTURING AND INDUSTRIAL ENGINEERINGEngineering Materials: Structure and properties of engineering materials and their applications, heat treatment.Metal Casting: Casting processes (expendable and non-expendable) -pattern, moulds and cores, Heating and pouring, Solidification and cooling, Gating Design, Design considerations, defects.Forming Processes: Stress-strain diagrams for ductile and brittle material, Plastic deformation and yield criteria, Fundamentals of hot and cold working processes, Bulk metal forming processes (forging, rolling extrusion, drawing), Sheet metal working processes (punching, blanking, bending, deep drawing, coining, spinning, Load estimation using homogeneous deformation methods, Defects). Processing of Powder metals- Atomization, compaction, sintering, secondary and finishing operations. Forming and shaping of Plastics- Extrusion, Injection Molding.Joining Processes: Physics of welding, Fusion and non-fusion welding processes, brazing and soldering, Adhesive bonding, Design considerations in welding, Weld quality defects.Machining and Machine ToolOperations: Mechanics of machining, Single and multi-point cutting tools, Tool geometry and materials, Tool life and wear, cutting fluids, Machinability, Economics of machining, non-traditional machining processes.Metrology and Inspection: Limits, fits and tolerances, linear and angular measurements, comparators, gauge design, interferometry, Form and finish measurement, measurement of screw threads, Alignment and testing methods.Tool Engineering: Principles of work holding, Design of jigs and fixtures. Computer Integrated Manufacturing: Basic concepts of CAD, CAM and their integration tools.Manufacturing Analysis: Part-print analysis, tolerance analysis in manufacturing and assembly, time and cost analysis.Work-Study: Method study, work measurement time study, work sampling, job evaluation, merit rating.Production Planning and Control: Forecasting models, aggregate production planning, master scheduling, materials requirements planning.Inventory Control: Deterministic and probabilistic models, safety stock inventory control systems.Operations Research: Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

Related questions

State two reasons why helical gears are more favourable in a vehicle transmission than straight-cut spur gears?

Far more driving surface contact and easier gear selection.


Is planetary gears used for spur gear?

Planetary gears can be spur or helical gears.


What is the difference between helical gear and screw?

Spur gears have straight teeth while helical gears have curved teeth. Generally, helical gears are usually quieter and smoother in operation, while spur gears are easier to make and much less expensive.Helical gears are stronger than spur gears.


What is the difference between spur gears and other gears?

Spur gears are cut with straight teeth. They can only transmit rotation between parallel shafts, and are relatively economical. Bevel gears have teeth cut on an angle. They transmit rotation between non-parallel shafts. Helical gears have curved teeth. They are generally quieter than spur gears, but are generally more difficult to make and more expensive.


What does a helical gear look like?

Helical gears are similar to spur gear except it's teeth are slant. They have good load distribution, less noise and less wear compare to spur gear.


Where are sliding gears used?

Sliding Gears in a transmission are straight-tooth spur gears with a taper (also known as a lead) to make engaging easier. Helical gears are mostly used in a transmission because spur gears produce gear noise and have a great strain on the teeth of the gear since only one tooth can be in contact at any given time. But because helical gears cannot be taken out of mesh, spur gears are used for the reverse gear because reverse spins the opposite way and cannot be in constant mesh.


What is a helical gear?

A helical is a spur gear with an angle along the face to increase the gear contact ratio. The gear teeth are cut at angles http://www.motioncontrolguide.com/learn/faqs/gearboxes-and-gears/helical-gears/what-is-the-difference-between-a-helical-gearbox-and-a-straight-gear-tooth-gearbox/ hope this helps


What is a hobbing machine used for?

A hobbing machine is used for cutting gear teeth in gear blanks and for cutting worm, spur, or helical gears.


Why reverse gear is spur?

Reverse gear is spur because it has to slide, sliding mesh gearbox uses spur gears. Because if it was constant mesh gear (helical) it could not slide in and out, therefore it could not go in the opposite direction of rotation.


Formula module in helical gear?

the module of a helical gear is calculated in the same way of that of a spur gear: module=pitch diameter / no of teeth the module of a helical gear is calculated in the same way of that of a spur gear: module=pitch diameter / no of teeth


What disadvantages of spur gears?

Advantages - Spur gears are simplest, easiest to design and manufacture and disadvanages i dunno :)


Where spur gears are used?

spur gears are used because there are many things such as bicycles that cant exist without a spur gear' > gearboxes, mechanical watches, cam drives