characteristick x-ray are those which is emmited by the electron of target atom due to transition from higher energy state to lower energy state,while continuous x-ray are those which is emmited by the atoms present in a material.
Line spectra are composed of distinct, discrete lines of light at specific wavelengths, while continuous spectra consist of a continuous range of wavelengths without distinct lines. Line spectra are produced by excited atoms emitting light at specific energy levels, while continuous spectra are emitted by hot, dense objects like stars. Line spectra are unique to each element and can be used to identify elements, while continuous spectra are characteristic of hot, dense objects emitting thermal radiation.
The Sun spectra is considered continuous.
The best place for information on the Polaroid Spectra cameras is camerapedia.org.
A continuous spectrum is seen in a rainbow.
NOESY spectra provide information on through-space interactions between protons, showing correlations between protons that are close in space. NOE difference spectra compare two spectra to highlight differences in nuclear Overhauser effect (NOE) intensities between two conditions, such as before and after a perturbation, revealing changes in molecular structure or dynamics.
They have different packaged particles.
Atomic spectra show individual lines instead of continuous spectra because each line corresponds to a specific energy level transition of electrons within the atom. When electrons move between energy levels, they emit or absorb energy in the form of light at specific wavelengths, creating distinct spectral lines. This results in the observed pattern of individual lines in atomic spectra.
an emission spectrum that consists of a continuum of wavelengths.
Two common sources of continuous spectra used in emission spectroscopy are the electrical discharge lamps and the incandescent lamps. Electrical discharge lamps, such as the mercury vapor lamps, produce continuous spectra due to the excitation of atoms or molecules in the gas discharge. Incandescent lamps, on the other hand, produce continuous spectra because of the thermal emission from the hot filament.
A continuous spectrum is produced by a hot, dense object emitting light at all wavelengths. It differs from other types of spectra, like emission and absorption spectra, which only show specific wavelengths of light emitted or absorbed by atoms or molecules.
The characteristic features of the IR spectra of benzophenone include a strong carbonyl (CO) stretch around 1700 cm-1, aromatic C-H stretches between 3000-3100 cm-1, and aromatic C-C stretches around 1500-1600 cm-1.
Different elements have different line spectra because each has a unique arrangement of energy levels for its electrons. When electrons transition between these energy levels, they emit or absorb specific wavelengths of light, creating distinct lines in the spectrum. This results in discrete lines rather than a continuous spectrum.