answersLogoWhite

0


Best Answer

The difference between drift current and diffusion current is that drift current depends on the electric field applied: if there's no electric field, there's no drift current. Diffusion current occurs even though there isn't an electric field applied to the semiconductor. It does not have E as one of its parameters. The constants it does depend on are Dp and Dn, and +q and -q, for holes and electrons respectively. The first constants are called the diffusion coefficients, a proportionality factor. We don't worry too much about these because they are constants. We do worry about the gradient of the concentration of p and/or n, though. But, since we are talking about a one dimensional situation when we are solving for current densities, we only worry about the gradient (or derivative) with respect to the x-plane. The other difference between drift current and diffusion current, is that the direction of the diffusion current depends on the change in the carrier concentrations, not the concentrations themselves. In the equation, the signs are reversed as we are used to seeing them. We usually assign a +q to holes and -q to electrons. In the case of diffusion current, they are reversed to be opposite of the derivative of the concentrations. This occurs because the carriers are diffusing from areas of high concentrations to areas of low concentrations. For example, if the derivative of pwith respect to x is positive, then the concentration of holes is growing as you move towards the +x direction. Diffusion current will be the opposite of that, the holes will be diffusing in the -x direction to where there's a lower concentration of holes. If the derivative is negative, the opposite will occur. The concentration of holes is decreasing as you go from the -x to +x direction. Therefore, holes will diffuse to the +x direction where there's a lower concentration of holes. This is why the negative sign is needed in the equation for the hole diffusion current. The same goes for electrons, but in this case, the signs cancel for a positive derivative because the electrons, carrying -q, diffuse to the -x direction where there's less electrons. The sign remains if the derivative is negative, because electrons will be diffusing to the +xdirection carrying a -q charge. For these reasons it's not included in the equation for the electron diffusion current. source: http://www.ece.utep.edu/courses/ee3329/ee3329/Studyguide/ToC/Fundamentals/CAction/diffusion.html The difference between drift current and diffusion current is that drift current depends on the electric field applied: if there's no electric field, there's no drift current. Diffusion current occurs even though there isn't an electric field applied to the semiconductor. It does not have E as one of its parameters. The constants it does depend on are Dp and Dn, and +q and -q, for holes and electrons respectively. The first constants are called the diffusion coefficients, a proportionality factor. We don't worry too much about these because they are constants. We do worry about the gradient of the concentration of p and/or n, though. But, since we are talking about a one dimensional situation when we are solving for current densities, we only worry about the gradient (or derivative) with respect to the x-plane. The other difference between drift current and diffusion current, is that the direction of the diffusion current depends on the change in the carrier concentrations, not the concentrations themselves. In the equation, the signs are reversed as we are used to seeing them. We usually assign a +q to holes and -q to electrons. In the case of diffusion current, they are reversed to be opposite of the derivative of the concentrations. This occurs because the carriers are diffusing from areas of high concentrations to areas of low concentrations. For example, if the derivative of pwith respect to x is positive, then the concentration of holes is growing as you move towards the +x direction. Diffusion current will be the opposite of that, the holes will be diffusing in the -x direction to where there's a lower concentration of holes. If the derivative is negative, the opposite will occur. The concentration of holes is decreasing as you go from the -x to +x direction. Therefore, holes will diffuse to the +x direction where there's a lower concentration of holes. This is why the negative sign is needed in the equation for the hole diffusion current. The same goes for electrons, but in this case, the signs cancel for a positive derivative because the electrons, carrying -q, diffuse to the -x direction where there's less electrons. The sign remains if the derivative is negative, because electrons will be diffusing to the +xdirection carrying a -q charge. For these reasons it's not included in the equation for the electron diffusion current. source: http://www.ece.utep.edu/courses/ee3329/ee3329/Studyguide/ToC/Fundamentals/CAction/diffusion.html The difference between drift current and diffusion current is that drift current depends on the electric field applied: if there's no electric field, there's no drift current. Diffusion current occurs even though there isn't an electric field applied to the semiconductor. It does not have E as one of its parameters. The constants it does depend on are Dp and Dn, and +q and -q, for holes and electrons respectively. The first constants are called the diffusion coefficients, a proportionality factor. We don't worry too much about these because they are constants. We do worry about the gradient of the concentration of p and/or n, though. But, since we are talking about a one dimensional situation when we are solving for current densities, we only worry about the gradient (or derivative) with respect to the x-plane. The other difference between drift current and diffusion current, is that the direction of the diffusion current depends on the change in the carrier concentrations, not the concentrations themselves. In the equation, the signs are reversed as we are used to seeing them. We usually assign a +q to holes and -q to electrons. In the case of diffusion current, they are reversed to be opposite of the derivative of the concentrations. This occurs because the carriers are diffusing from areas of high concentrations to areas of low concentrations. For example, if the derivative of pwith respect to x is positive, then the concentration of holes is growing as you move towards the +x direction. Diffusion current will be the opposite of that, the holes will be diffusing in the -x direction to where there's a lower concentration of holes. If the derivative is negative, the opposite will occur. The concentration of holes is decreasing as you go from the -x to +x direction. Therefore, holes will diffuse to the +x direction where there's a lower concentration of holes. This is why the negative sign is needed in the equation for the hole diffusion current. The same goes for electrons, but in this case, the signs cancel for a positive derivative because the electrons, carrying -q, diffuse to the -x direction where there's less electrons. The sign remains if the derivative is negative, because electrons will be diffusing to the +xdirection carrying a -q charge. For these reasons it's not included in the equation for the electron diffusion current. source: http://www.ece.utep.edu/courses/ee3329/ee3329/Studyguide/ToC/Fundamentals/CAction/diffusion.html

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the difference between drift current and diffusion current?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

What is zero drift current?

it is a current which has zero drift and it is ugly


What relation between electric current and drift velocity?

The relation between electric current and drift velocity is that they both happen to involve electrons moving opposite of the electric field. The electric field must also have a conductor.


What is the differenc e between drift diffusion current?

Specifically, drift relates the movement of a carrier (e.g., an electron or hole) to an applied electric field (i.e., the velocity of the carrier is proportional to the electric field, where the proportionality constant, mobility, is a quantity derived in solid-state physics). Diffusion relates the movement of carriers due to random (i.e., thermal) behavior and non-uniform distribution (i.e., the velocity of the carrier is proportional to the logarithmic derivative of the density of carriers, where the proportionality constant, the diffusion constant, is a quantity derived in solid-state physics).


What is the relationship between potential difference and direction of flow of current in an electric circuit?

Electric current always flows from high potential to low potential. This creates the flow of electric current in an electric circuit.AnswerIn a metal conductor, current is defined as a drift of free electrons. As electrons are negatively charged, this means that current drifts along a conductor from a negative potential to a positive potential.However....Current direction is often defined as a drift from a positive potential to a negative potential. This is termed 'conventional flow', and dates back to when scientists, such as Benjamin Franklin, believed that current was some sort of fluid that flowed from a higher pressure ('positive' pressure) to a lower pressure ('negative' pressure). Although incorrect, conventional flow is still widely-used today in many textbooks.


What is the effect on the drift velocity of free electrons by decreasing the length and the temperature of wire?

As we know , resistance(R) is directly proportional to length(L) of conductor and resistence(R) is inversely proportional to current (I) and I=nAqv (v is drift velocity) So , if we decrease the length of the conductor , resistance of the conductor will decrease and current(I) will increase and drift velocity of free electrons will increase . And as we know resistance and temperature have direct relation so , by decreasing the temperature resistence will decrease and current will increase . So drift velocity will increase .

Related questions

What is the difference between longshore drift and longshore current?

Current is with water and drift is moving sediments in the current


Can diffusion current and drift current can exist in a Semi conductors?

Yes.


Does drift current depends on carrier concentration?

no,drift current depends upon electric field where as carrier concentration lead to diffusion current


In an electrode-electrolyte circuit what do the terms drift current and diffusion current mean?

A drift current is electric charges being moved in the presence of an electric field, and a diffusion current is electric charges being moved by a chemical diffusion gradient (where no electric field exists, but where there is a concentration gradient of chemical species driving the current).


What is definition of diffusion current?

The diffusion current in a metal-semiconductor diode is derived based on the assumption that the depletion layer is large compared to the mean free path, so that the concepts of drift and diffusion are valid.


Why is the current in diodes only due to diffusion and not influenced by electric field of batteries?

In diodes there are two types of current namely diffusion and drift current. Former one is due to concentration gradient of majority carriers (hole in p side n electron in n-side). Due to this difference of concentration of carriers majority carrier start to diffuse in other side. The amount of diffusion is just depends on concentration. Contrast to this, drift current which is very small in compare to diffusion current depends on the applied voltage across the diode. Since total current is mainly due to diffusion in forward biased hence it is not too much effected by battery's electric field. I dint know that batteries have electric field. INTERESTING.


What is the Difference between drift and ocean current?

ocean currents can be warm or cold.they are streams of water flowing constantlyon the ocean surface.


What difference between stratified drift and till?

toe and wedge


What is difference between till and stratified drift?

toe and wedge


What is zero drift current?

it is a current which has zero drift and it is ugly


What relation between electric current and drift velocity?

The relation between electric current and drift velocity is that they both happen to involve electrons moving opposite of the electric field. The electric field must also have a conductor.


What is the main difference between natural selection and genetic drift?

The main difference to remember is that natural selection is a nonrandom process while genetic drift is a random process.