the answer is..... well figure it out yourself you dumb as*
The elements in column 13 of the periodic table (Group 13) typically have an oxidation number of +3 in their compounds. This includes elements such as boron, aluminum, gallium, indium, and thallium.
The oxidation number of gallium is typically +3. This is because gallium belongs to Group 13 of the periodic table, and elements in this group typically exhibit an oxidation state of +3 in their compounds.
The oxidation numbers for the first 20 elements in the periodic table are typically as follows: Group 1 elements: +1; Group 2 elements: +2; Group 13 elements: +3; Group 14 elements: +4 or -4; Group 15 elements: -3; Group 16 elements: -2; Group 17 elements: -1; Group 18 elements: 0. Keep in mind that oxidation numbers can vary in different compounds and contexts.
The group number of an element often corresponds to the typical oxidation state it will exhibit. For main group elements (groups 1, 2, 13-18), the oxidation state is typically equal to the group number. However, transition metals (groups 3-12) can exhibit multiple oxidation states due to their partially filled d orbitals.
Positive oxidation numbers are most common with the metals - groups 1 to 13. However there are many well known compounds where non-metals have positive oxidation numbers- for example NaClO4 where Cl has an oxidation number of +7
The elements in column 13 of the periodic table (Group 13) typically have an oxidation number of +3 in their compounds. This includes elements such as boron, aluminum, gallium, indium, and thallium.
The oxidation number of gallium is typically +3. This is because gallium belongs to Group 13 of the periodic table, and elements in this group typically exhibit an oxidation state of +3 in their compounds.
The oxidation numbers for the first 20 elements in the periodic table are typically as follows: Group 1 elements: +1; Group 2 elements: +2; Group 13 elements: +3; Group 14 elements: +4 or -4; Group 15 elements: -3; Group 16 elements: -2; Group 17 elements: -1; Group 18 elements: 0. Keep in mind that oxidation numbers can vary in different compounds and contexts.
The most common negative oxidation state in Group 13 elements is -3. This is particularly seen in compounds where these elements form three bonds with more electronegative species.
The group number of an element often corresponds to the typical oxidation state it will exhibit. For main group elements (groups 1, 2, 13-18), the oxidation state is typically equal to the group number. However, transition metals (groups 3-12) can exhibit multiple oxidation states due to their partially filled d orbitals.
Positive oxidation numbers are most common with the metals - groups 1 to 13. However there are many well known compounds where non-metals have positive oxidation numbers- for example NaClO4 where Cl has an oxidation number of +7
In very simple terms to achieve the octet atoms either lose valence electrons or gain them. The number of valence electrons for the period 2 elements is relativelly straightforward use the group number and remember to take 10 away from B, C, N, O and F. So as an example boron in group 13 has 3 valence electrons- so gain of +5 or loss of 3. Gaining five seems so excessive so your best guess is +3, which is true in say B2O3As for using the periodic table to predict- not so easy- take gallium - in group 13 has 3 valence electrons- so it could lose 3 to give an octet, which indeed is its most common ON but can also lose 1 electron to form Ga+
Group 16 on the periodic table has elements that form a -2 charge when they bond ionically with metals. This group contains the very common elements oxygen and sulfur. They are usually referred to simply as group 16, group 6A, the "oxygen group," or by their old-fashioned name, the chalcogens.
theres a difference in the number of valence electrons
There many with +3 oxidation.Some are Al, Fe, Bi.
theres a difference in the number of valence electrons
Elements in group IIIA, also known as group 13, have 3 electrons in their outermost shell. This is because they are located in the third column of the periodic table, which determines the number of valence electrons an element has based on its group number.