We have no way of knowing the probability of any given person flipping
any given coin at any given time. But for any two flips of an honest coin,
the probability that both are tails is 25% . (1/4, or 3 to 1 against)
The probability of flipping a coin 3 times and getting 3 heads is 1/2
There are 8 permutations of flipping a coin 3 times, or of flipping 3 coins one time. They are, with the permutations of two heads bolded...TTTTTHTHTTHHHTTHTHHHTHHH... thus, the probability of flipping a coin 3 times and getting 2 heads is 3 in 8, or 0.375.
The best way to think about this is the following way: What is the probability of flipping heads once? 1/2 What is the probability of flipping heads twice? 1/4 (1/2 * 1/2) Using this we can derive the equation to find the probability of flipping heads any number of times. 1/2n Using this we plug in 25 for n and get 1/225 or as a decimal 2.98023224 x 10-8 or as odds 1:33,554,432
p(heads)= 0.5 p(heads)^4= 0.0625
You still still have a 1:2 chance of getting heads regardless of the times you flip.
The probability of heads is 0.5 each time.The probability of four times is (0.5 x 0.5 x 0.5 x 0.5) = 0.0625 = 1/16 = 6.25% .
The probability of getting a heads on the first flip is 1/2. Similarly, the probability on each subsequent flip is 1/2, since they are independent events. The probability of several independent events happening together is the product of their individual probabilities.
Theoretical is 50% Heads, 50% tails: 30-Heads, 30-Tails (theoretical)
The probability is 25%. The probability of flipping a coin once and getting heads is 50%. In your example, you get heads twice -- over the course of 2 flips. So there are two 50% probabilities that you need to combine to get the probability for getting two heads in two flips. So turn 50% into a decimal --> 0.5 Multiply the two 50% probabilities together --> 0.5 x 0.5 = 0.25. Therefore, 0.25 or 25% is the probability of flipping a coin twice and getting heads both times.
If it is a fir coin, the probability is (1/2)10 = 1/1024.
50/50 50/50? This is equal to 1 which would imply the probability of flipping a head is certain. Obviously not correct as the probability of flipping a head in a fair dice is 1/2 or 0.5
The probability of flipping a fair coin four times and getting four heads is 1 in 16, or 0.0625. That is simply the probability of one head (0.5) raised to the power of 4.
The probability of throwing exactly 2 heads in three flips of a coin is 3 in 8, or 0.375. There are 8 outcomes of flipping a coin 3 times, HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. Of those outcomes, 3 contain two heads, so the answer is 3 in 8.
1:6 * * * * * No. It is 10/32 = 5/16
1/8. The probability of flipping a coin three times and it landing on head is 1/2, as a coin only has two sides. You flip a coin three times, therefore the answer is (1/2)^3 = 1/8.
The odds of flipping a coin and having it come up heads three times in a row is (1/2)*(1/2)*(1/2)=(1/8) or 12.5% ■
None, since that would imply that in 18 cases the coin did not show heads or tails!
Every time you flip a coin it has a 50% chance of heads and a 50% chance of tails. Flipping a coin multiple times does not change that. Therefore the answer is 50%
The probability on the first flip is 50% .The probability on the 2nd flip is 50% .The probability on the 3rd flip is 50% .The probability on the 4th flip is 50% .The probability of 4 heads is (50% x 50% x 50% x 50%) = (0.5)4 = 1/16 = 6.25%
Experimental probability is calculated by taking the data produced from a performed experiment and calculating probability from that data. An example would be flipping a coin. The theoretical probability of landing on heads is 50%, .5 or 1/2, as is the theoretical probability of landing on tails. If during an experiment, however, a coin is flipped 100 times and lands on heads 60 times and tails 40 times, the experimental probability for this experiment for landing on heads is 60%, .6 or 6/10. The experimental probability of landing on tails would be 40%, .4, or 6/10.
Mathematical probability is how many times something is projected to occur, where as experimental probability is how many times it actually occurred. For example, when discussing the probability of a coin landing heads side up... Mathematical probability is 1:2. However, if you actually carryout an experiment flipping the coin 5 times the Experimental probability may be 2:5
The probability is 1. I have flipped a coin a lot more than 7 times.
The correct answer is 1/2. The first two flips do not affect the likelihood that the third flip will be heads (that is, the coin has no "memory" of the previous flips). If you flipped it 100 times and it came up heads each time, the probability of heads on the 101st try would still be 1/2. (Although, if you flipped it 100 times and it came up heads all 100 times - the odds of which are 2^100, or roughly 1 in 1,267,650,000,000,000,000,000,000,000,000 - you should begin to wonder about whether it's a fair coin!). If you were instead asking "What is the probability of flipping a coin three times and having it land on "heads" all three times, then the answer is 1/8.
The probability of flipping a coin 24 times and getting all heads is less than 1 in 16 million. (.524) It would seem that no one has ever done that.
The probability of flipping one coin and getting tails is 1/2. In order to find the probability of multiple events occurring, you find the product of all the events. For 3 coins the probability of getting tails 3 times is 1/8 because .5 x .5 x .5 = .125 or 1/8.