Quantcast
answersLogoWhite
notificationBell

Top Answer
User Avatar
Wiki User
Answered 2010-05-14 19:13:25

Pr(3 flips at least one H) = 1 - Pr(3 flips, NO heads)

= 1 - Pr(3 flips, TTT) = 1 - (1/2)3 = 1 - 1/8 = 7/8

001
๐Ÿ™๐Ÿฟ
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
๐Ÿ˜‚
0
User Avatar

Your Answer

Still Have Questions?

Related Questions

What is the probability of flipping a head when you roll a coin 3 times?

If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8


What is the probability of two consecutive different coin flips?

The probability is 1/2 if the coin is flipped only twice. As the number of flips increases, the probability approaches 1.


What is the probability of obtaining exactly two heads in three flips of a coin given that at least one is a head?

The probability of obtaining exactly two heads in three flips of a coin is 0.5x0.5x0.5 (for the probabilities) x3 (for the number of ways it could happen). This is 0.375. However, we are told that at least one is a head, so the probability that we got 3 tails was impossible. This probability is 0.53 or 0.125. To deduct this we need to divide the probability we have by 1-0.125 0.375/(1-0.125) = approximately 0.4286


What is the probability of obtaining exactly seven heads in eight flips of a coin given that at least one is a head?

The probability of obtaining 7 heads in eight flips of a coin is:P(7H) = 8(1/2)8 = 0.03125 = 3.1%


What are the odds in favor of getting at least one head in 3 consecutive flips of a coin?

>>> 1:7 (or, if you like probability, 87.5%)I disagree. There are four possible combinations of three tosses (where order does not matter):HHHHHTHTTTTTThree of these combinations will show at least one head - only by throwing three tails will you not throw at least one head.Thus, the probability of throwing at least one head in three flips is 75%.


What is the probability of obtaining exactly four heads in five flips of a coin given that at least three are heads?

We can simplify the question by putting it this way: what is the probability that exactly one out of two coin flips is a head? Our options are HH, HT, TH, TT. Two of these four have exactly one head. So 2/4=.5 is the answer.


What is the probability of getting two head and one tail if a coin is tossed 3 times?

the probability of getting one head and one tail on three flips of a coin is 1/9


What is the probability of exactly three heads in four flips of a coin given at least two are heads?

If you know that two of the four are already heads, then all you need to find isthe probability of exactly one heads in the last two flips.Number of possible outcomes of one flip of one coin = 2Number of possible outcomes in two flips = 4Number of the four outcomes that include a single heads = 2.Probability of a single heads in the last two flips = 2/4 = 50%.


What is the probability of obtaining exactly six heads in seven flips of a coin given that at least one is a head?

The requirement that one coin is a head is superfluous and does not matter. The simplified question is "what is the probability of obtaining exactly six heads in seven flips of a coin?"... There are 128 permutations (27) of seven coins, or seven flips of one coin. Of these, there are seven permutations where there are exactly six heads, i.e. where there is only one tail. The probability, then, of tossing six heads in seven coin tosses is 7 in 128, or 0.0546875.


What is the PH H H T on four flips of a coin?

Assuming the coin is fair, the probability of that sequence is 1/16. The probability of three H and one T, in any order, is 1/4.


You flipped a coin two times. What is the probability of getting at least one head?

With two flips of a coin you can get two heads, two tails, a head and a tail, or a tail and a head. There are a total of four different possible outcomes, and three of them have at least one head. That's 3 out of 4, or 3/4ths. It's also 0.75 which is the probability of getting at least one head with two flips of a coin. Note that as we use the term probability here, it is zero (no chance it can happen at all), or one (it must happen), or something in between. A probability appears in the form of a fraction or decimal, and has no units attached to it.


What is the probability of getting heads more than once if you flip a coin three times?

For 3 coin flips: 87% chance of getting heads at least once 25% chance of getting heads twice 13% chance of getting heads all three times



Arnold flipped a coin twice and it landed heads up both times If he flips the coin again What is the probability the coin will land heads up?

The correct answer is 1/2. The first two flips do not affect the likelihood that the third flip will be heads (that is, the coin has no "memory" of the previous flips). If you flipped it 100 times and it came up heads each time, the probability of heads on the 101st try would still be 1/2. (Although, if you flipped it 100 times and it came up heads all 100 times - the odds of which are 2^100, or roughly 1 in 1,267,650,000,000,000,000,000,000,000,000 - you should begin to wonder about whether it's a fair coin!). If you were instead asking "What is the probability of flipping a coin three times and having it land on "heads" all three times, then the answer is 1/8.


What is the probability of getting exactly three heads when you flip a coin four times?

If it is a fair coin, the probability is 1/4.If it is a fair coin, the probability is 1/4.If it is a fair coin, the probability is 1/4.If it is a fair coin, the probability is 1/4.


If you were to flip a coin 4 times what is the probability of getting heads at least one time?

As the question is "what is the probability of getting at least one head" the correct way to answer this is to ask what is the probability of not getting any heads and then subtract this from 1.The probability of not getting a head in 4 flips = 0.54 (i.e. 0.5 * 0.5 * 0.5 * 0.5) = 1/16.Therefore the probability of getting at least one head is 1 - 1/16 = 15/16.


What is the expected number of flips of a coin to simulate a six-sided die?

Five coin flips. Any outcome on a six-sided die has a probability of 1 in 6. If I assume that the order of the outcome does not matter, the same probability can be achieved with five flips of the coin. The possible outcomes of five flips of a coin are as follows: 5 Heads 5 Tails 4 Heads and 1 Tails 4 Tails and 1 Heads 3 Heads and 2 Tails 3 Tails and 2 Heads For six possible outcomes.


What is the probabilty that a coin will land on heads if flipped 8 times?

This is a probability question. Probabilities are calculated with this simple equation: Chances of Success / [Chances of Success + Chances of Failure (or Total Chances)] If I flip a coin, there is one chance that it will land on heads and one chance it will land on tails. If success = landing on heads, then: Chances of Success = 1 Chances of Failure = 1 Total Chances = 2 Thus the probability that a coin will land on heads on one flip is 1/2 = .5 = 50 percent. (Note that probability can never be higher than 100 percent. If you get greater than 100 you did the problem incorrectly) Your question is unclear whether you mean the probability that a coin will land on head on any of 8 flips or all of 8 flips. To calculate either you could write out all the possible outcomes of the flips (for example: heads-heads-tails-tails-heads-tails-heads-heads) but that would take forvever. Luckily, because the outcome of one coin flip does not affect the next flip you can calculate the total probability my multiplying the probabilities of each individual outcome. For example: Probability That All 8 Flips Are Heads = Prob. Flip 1 is Heads * Prob. Flip 2 is Heads * Prob. Flip 3 is Heads...and so on Since we know that the probability of getting heads on any one flips is .5: Probability That All 8 Flips Are Heads = .5 * .5 * .5 * .5 * .5 * .5 * .5 * .5 (or .58) Probability That All 8 Flips Are Heads = .00391 or .391 percent. The probability that you will flip a heads on any of flips is similar, but instead of thinking about what is the possiblity of success, it is easier to approach it in another way. The is only one case where you will not a heads on any coin toss. That is if every outcome was tails. The probability of that occurring is the same as the probability of getting a heads on every toss because the probability of getting a heads or tails on any one toss is 50 percent. (If this does not make sense redo the problem above with tails instead of heads and see if your answer changes.) However this is the probability of FAILURE not success. This is where another probability formula comes into play: Probability of Success + Probability of Failure = 1 We know the probability of failure in this case is .00391 so: Probability of Success + .00391 = 1 Probability of Success = .9961 or 99.61 percent. Therefore, the probability of flipping a heads at least once during 8 coin flips is 99.61 percent. The probability of flipping a heads every time during 8 coin flips is .391 percent.


You toss three coins What is the probability of the event 3 Heads appear?

Since each event is independent (heads in one coin does not affect the probability of the other two coin flips), the multiplication rule applies: 1/2 x 1/2 x 1/2 = 1/8 or 0.125. So we can say the probability is 12.5%.


What would the theoretical probability be of flipping a coin four times?

Anyone can flip a coin four times so I say 100 percent probability. On the other maybe you should ask the odds of the results from four flips.


A coin is tossed 10 times. What is the probability of getting at least one head?

Assuming that it is a fair coin, the probability is 0.9990


What is the probability of obtaining exactly three heads in four flips of a coin given that at least two are heads?

Pr(3H given >= 2H) = Pr(3H and >= 2H)/Pr(>=2H) = Pr(3H)/Pr(>=2H) = (1/4)/(11/16) = 4/11.


What are the odds against getting exactly two heads in three successive flips of a coin?

Three in eight are the odds of getting exactly two heads in three coin flips. There are eight ways the three flips can end up, and you can get two heads and a tail, a head and a tail and a head, or a tail and two heads to get exactly two heads.



What is the probability of flipping a coin twice and getting two heads?

The probability is 25%. The probability of flipping a coin once and getting heads is 50%. In your example, you get heads twice -- over the course of 2 flips. So there are two 50% probabilities that you need to combine to get the probability for getting two heads in two flips. So turn 50% into a decimal --> 0.5 Multiply the two 50% probabilities together --> 0.5 x 0.5 = 0.25. Therefore, 0.25 or 25% is the probability of flipping a coin twice and getting heads both times.


Still have questions?

Trending Questions
Unanswered Questions