Usually the oxidation no of oxygen is -2 and the oxidation no of hydrogen is +1 in a compound.
The usual oxidation state for oxygen in a compound is -2.
The oxidation number for C in NH2CONH2 is +2. This is because each hydrogen has an oxidation number of +1, and oxygen has an oxidation number of -2. By assigning hydrogen and oxygen their usual oxidation numbers, we can determine that the nitrogen atoms in NH2CONH2 have an oxidation state of -3, and since each nitrogen atom contributes three electrons to the carbon atom, the overall oxidation state of carbon is +2.
The oxidation number for Mn in H2MnO3 is +3. In this compound, oxygen is typically assigned an oxidation number of -2, and hydrogen is +1. By considering the overall charge of the compound and assigning hydrogen and oxygen their usual oxidation states, the oxidation number of Mn can be calculated as +3.
The oxidation number of carbon in carbonate (CO3^2-) is +4. In the carbonate ion, each oxygen atom has an oxidation number of -2, so the overall charge of the ion is -2. This means the oxidation number of carbon must be +4 to balance the charges in the compound.
In most compounds oxygen will have an oxidation state of -2. The only exceptions are peroxides (-1), superoxides (-1/2), and compounds in which oxygen bonds with fluorine (+1 or +2).
The usual oxidation state for oxygen in a compound is -2.
The oxidation number for C in NH2CONH2 is +2. This is because each hydrogen has an oxidation number of +1, and oxygen has an oxidation number of -2. By assigning hydrogen and oxygen their usual oxidation numbers, we can determine that the nitrogen atoms in NH2CONH2 have an oxidation state of -3, and since each nitrogen atom contributes three electrons to the carbon atom, the overall oxidation state of carbon is +2.
+1 for hydrogen in most of the compounds and -1 in hydrides and hydrocarbons
The oxidation number for Mn in H2MnO3 is +3. In this compound, oxygen is typically assigned an oxidation number of -2, and hydrogen is +1. By considering the overall charge of the compound and assigning hydrogen and oxygen their usual oxidation states, the oxidation number of Mn can be calculated as +3.
The usual state of oxygen and hydrogen: they are gases at room temperature.
The oxidation number of carbon in carbonate (CO3^2-) is +4. In the carbonate ion, each oxygen atom has an oxidation number of -2, so the overall charge of the ion is -2. This means the oxidation number of carbon must be +4 to balance the charges in the compound.
In most compounds oxygen will have an oxidation state of -2. The only exceptions are peroxides (-1), superoxides (-1/2), and compounds in which oxygen bonds with fluorine (+1 or +2).
An oxidation state is a number that is assigned to an element in a chemical combination.
The oxidation number of antimony in Sb2O5 is +5. Each oxygen atom has an oxidation number of -2, so the total contribution of oxygen is -10. Since the compound is neutral, the sum of oxidation numbers must be zero, leading to +5 for antimony.
To find the oxidation number of chlorine, consider that chlorine typically has an oxidation number of -1 in its compounds. However, in certain situations, such as when bonded with oxygen or other halogens, chlorine can have different oxidation states. It's important to follow the usual oxidation number rules and balance the charges in the compound to determine the oxidation number of chlorine.
The usual state of oxygen and hydrogen: they are gases at room temperature.
In 4 hydrogen atoms and 2 oxygen atoms, there are a total of 10 atoms (4 hydrogen + 2 oxygen).