answersLogoWhite

0


Best Answer

The Second Law of Thermodynamics.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What law states that entropy tends to increase over time?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is the law of entropy?

Entropy is the scientific concept of disorder and randomness that has many broad applications across different branches of physics. While it is not a law itself, it is central to understanding the Second Law of Thermodynamics, as objects that are in thermodynamic equilibrium are at their highest state of entropy.


How do you calculate mixing Gas entropy?

The entropy of mixing is the change in theconfiguration entropy, an extensivethermodynamic quantity, when two differentchemical substances or components are mixed and the volume available for each substance to explore is changed. The name entropy of mixing is misleading, since it is not the intermingling of the particles that creates the entropy change, but rather the change in the available volume per particle.[1] This entropy change is positive when there is more uncertainty about thespatial locations of the different kinds ofmolecules. We assume that the mixing process has reached thermodynamic equilibrium so that the mixture is uniform and homogeneous. If the substances being mixed are initially at different temperatures and pressures, there will, of course, be an additional entropy increase in the mixed substance due to these differences being equilibrated, but if the substances being mixed are initially at the same temperature and pressure, the entropy increase will be entirely due to the entropy of mixing.The entropy of mixing may be calculated by Gibbs' Theorem which states that when two different substances mix, the entropy increase upon mixing is equal to the entropy increase that would occur if the two substances were to expand alone into the mixing volume. (In this sense, then the term "entropy of mixing" is a misnomer, since the entropy increase is not due to any "mixing" effect.) Nevertheless, the two substances must be different for the entropy of mixing to exist. This is the Gibbs paradoxwhich states that if the two substances are identical, there will be no entropy change, yet the slightest detectable difference between the two will yield a considerable entropy change, and this is just the entropy of mixing. In other words, the entropy of mixing is not a continuous function of the degree of difference between the two substances.For the mixing of two ideal gases upon removal of a dividing partition, the entropy of mixing is given by:(1)[tex]\Delta S = n1R\ln((V1+V2)/V1) + n2R\ln((V1+V2)/V2)[/tex]where is the gas constant, n1 and n2 are the number of moles of the respective gases and V1, V2 are their respective initial volumes. After the removal of the partition, each gas particle may explore a larger volume, which causes the entropy change. Note that this equation is only valid if both compartments have the same initial pressure.Note that the mixing involves no heat flow (just the irreversible process of mixing). However, the change in entropy is defined as the integral of dQ/T over the reversible path between the initial and final states. The reversible path between these two states is a quasi-static isothermal expansion. Such a path DOES involve heat flow into the gas: dQ = PdV = nRTdV/V where T is constant (dU = 0). The above equation (1) for entropy is determined by taking the integral of dQ/T over such a path.


What is the application of entropy?

Entropy S, doesn't really have an "application". It is one of the fundamental state functions in thermodynamics, and ranks alongside, E, P, V, T Traditionally termed a measure of disorder, a more understandable description is that it is a measure of how energy is spread over energy micro-states.


What does the 2nd Law of Thermodynamics say about Direction of heat transfer?

In nature heat only moves naturally from warmer systems to cooler systems. One direction only. Never naturally from something cold into something hot. We can pump heat out of a system by doing work on it, such as a refrigerator where the refrigerant is compressed - making it much hotter than the surroundings - then letting it give off heat to the surroundings, then expanding it across a valve where the evaporation and expansion causes it to get colder than the inside of the fridge - then allowing it to absorb heat from the inside of the fridge, then sending it back to the compressor to start all over again.


What happens to the entropy of a system as more heat is added beyond the boiling point?

Fundamentally, if the entropy of a system increases, that means that the energy of the system ("normalized" to , i.e., divided by the temperature of the system) has become more "dispersed" or "dilute". For instance, if a system increases its volume at constant energy and temperature, then the energy per unit temperature is now more "dilute", being spread over a larger volume. All spontaneous processes result in a "dilution" or "spreading out" of the energy of the universe. The more dilute the energy of a system is (the higher the entropy of that system) the harder is is to harness that energy to do useful work. Another useful way of thinking about entropy is to consider it as a measure of the amount of information needed to completely specify the state of a system. Ultimately, this means how much information is needed to specify the positions and momenta of every particle in the system.

Related questions

What statement best describes the second law of thermodynamics?

The entropy of the universe is increasing


Does the entropy of a system increase over time?

Yes.


Did the ice's entropy increase or decrease over time?

increased


When someone order something don't he reduce entropy of the universe?

No. You can reduce the entropy of some system, but that will be at the cost of an entropy increase somewhere else. This is because it costs energy to put something in order. The TOTAL entropy in the Universe will always increase. For example, the entropy on planet Earth probably remains more or less constant over millions of years - but we do so using energy, mainly from the Sun, and the fact that energy from the Sun radiates into space is an increase of entropy; much greater than any small change of entropy on our planet.


Does a magnet loose its force over time?

All entropy must increase to maxiumum. Ask Multivac.


What is the law of entropy?

Entropy is the scientific concept of disorder and randomness that has many broad applications across different branches of physics. While it is not a law itself, it is central to understanding the Second Law of Thermodynamics, as objects that are in thermodynamic equilibrium are at their highest state of entropy.


Is it true that the entropy of a system decreases over time?

false


How do you calculate mixing Gas entropy?

The entropy of mixing is the change in theconfiguration entropy, an extensivethermodynamic quantity, when two differentchemical substances or components are mixed and the volume available for each substance to explore is changed. The name entropy of mixing is misleading, since it is not the intermingling of the particles that creates the entropy change, but rather the change in the available volume per particle.[1] This entropy change is positive when there is more uncertainty about thespatial locations of the different kinds ofmolecules. We assume that the mixing process has reached thermodynamic equilibrium so that the mixture is uniform and homogeneous. If the substances being mixed are initially at different temperatures and pressures, there will, of course, be an additional entropy increase in the mixed substance due to these differences being equilibrated, but if the substances being mixed are initially at the same temperature and pressure, the entropy increase will be entirely due to the entropy of mixing.The entropy of mixing may be calculated by Gibbs' Theorem which states that when two different substances mix, the entropy increase upon mixing is equal to the entropy increase that would occur if the two substances were to expand alone into the mixing volume. (In this sense, then the term "entropy of mixing" is a misnomer, since the entropy increase is not due to any "mixing" effect.) Nevertheless, the two substances must be different for the entropy of mixing to exist. This is the Gibbs paradoxwhich states that if the two substances are identical, there will be no entropy change, yet the slightest detectable difference between the two will yield a considerable entropy change, and this is just the entropy of mixing. In other words, the entropy of mixing is not a continuous function of the degree of difference between the two substances.For the mixing of two ideal gases upon removal of a dividing partition, the entropy of mixing is given by:(1)[tex]\Delta S = n1R\ln((V1+V2)/V1) + n2R\ln((V1+V2)/V2)[/tex]where is the gas constant, n1 and n2 are the number of moles of the respective gases and V1, V2 are their respective initial volumes. After the removal of the partition, each gas particle may explore a larger volume, which causes the entropy change. Note that this equation is only valid if both compartments have the same initial pressure.Note that the mixing involves no heat flow (just the irreversible process of mixing). However, the change in entropy is defined as the integral of dQ/T over the reversible path between the initial and final states. The reversible path between these two states is a quasi-static isothermal expansion. Such a path DOES involve heat flow into the gas: dQ = PdV = nRTdV/V where T is constant (dU = 0). The above equation (1) for entropy is determined by taking the integral of dQ/T over such a path.


Entropy involves losing energy over time?

that is not a full questionif it was does entropy involve losing energy ever time, then yes


Which is a statement of the second law of thermodynamics?

Entropy tends to increase in a system.


What happens to the entropy of the cards when they are knocked over?

That depends on how you define "level of entropy". Usually the term refers to the degree of randomness in a system. If the system is defined as a deck of cards, then the level of entropy will depend on how randomized the cards are. A standard deck comes with the cards in a pre-set order for which the entropy would be considered zero (perfect order). Any deviation from that initial order would then increase the level of entropy; it is thus necessary to not only state what the system is (a deck of cards) but to also state the condition of the system (how well shuffled the cards are) before you can determine the level of entropy of the system.


What is the application of entropy?

Entropy S, doesn't really have an "application". It is one of the fundamental state functions in thermodynamics, and ranks alongside, E, P, V, T Traditionally termed a measure of disorder, a more understandable description is that it is a measure of how energy is spread over energy micro-states.