Depolarization occurs when a stimulus opens sodium channels which allow more sodium to go into the membrane making it less negative and more positive (toward reaching threshold). An action potential can only occur once the membrane reaches threshold which means it has reached the level needed through depolarization. An action potential is a brief reversal in polarity of the membrane making the inside more positive and the outside more negative, the reverse occurs again once the membrane reaches resting potential.
Sodium.A positive ion (cation) that enters the cell (influx) rapidly when the membrane threshold is reached and the voltage gated sodium channels open.This occurs during the rising phase of an action potential, i.e. membrane depolarization beyond the threshold for activation.
Depolarization is the initial phase of the action potential characterized by a rapid influx of sodium ions into the cell, causing a change in membrane potential from negative to positive. This occurs when voltage-gated sodium channels open in response to a threshold stimulus, leading to the depolarization of the cell membrane.
Arterial depolarization occurs when action potentials are generated in the cardiac cells of the heart during the electrical conduction system, leading to the contraction of the heart muscle. This depolarization occurs as the electrical signal travels through the atria and then the ventricles, causing them to contract and pump blood.
A shift in the electrical potential across a plasma membrane toward 0mV is called depolarization. This occurs when the inside of the cell becomes less negative, potentially triggering an action potential in excitable cells like neurons and muscle cells.
Depolarization occurs when a stimulus opens sodium channels which allow more sodium to go into the membrane making it less negative and more positive (toward reaching threshold). An action potential can only occur once the membrane reaches threshold which means it has reached the level needed through depolarization. An action potential is a brief reversal in polarity of the membrane making the inside more positive and the outside more negative, the reverse occurs again once the membrane reaches resting potential.
Sodium.A positive ion (cation) that enters the cell (influx) rapidly when the membrane threshold is reached and the voltage gated sodium channels open.This occurs during the rising phase of an action potential, i.e. membrane depolarization beyond the threshold for activation.
Depolarization is the initial phase of the action potential characterized by a rapid influx of sodium ions into the cell, causing a change in membrane potential from negative to positive. This occurs when voltage-gated sodium channels open in response to a threshold stimulus, leading to the depolarization of the cell membrane.
Sodium ions are responsible for the rising phase of the action potential. This occurs when sodium channels open and sodium ions flow into the cell, causing depolarization.
The reversal of the resting potential owing to an influx of sodium ions is called depolarization. This occurs when the membrane potential becomes less negative, bringing it closer to the threshold for action potential initiation.
An overshoot in action potential occurs due to the rapid influx of sodium ions causing the membrane potential to become more positive than the resting potential. This depolarization phase is necessary for propagating the action potential along the neuron.
Arterial depolarization occurs when action potentials are generated in the cardiac cells of the heart during the electrical conduction system, leading to the contraction of the heart muscle. This depolarization occurs as the electrical signal travels through the atria and then the ventricles, causing them to contract and pump blood.
A shift in the electrical potential across a plasma membrane toward 0mV is called depolarization. This occurs when the inside of the cell becomes less negative, potentially triggering an action potential in excitable cells like neurons and muscle cells.
Depolarization is the process where the membrane potential becomes less negative, moving towards zero or even becoming positive. This occurs when sodium ions rush into the cell. Repolarization is the return of the membrane potential back to its resting state, following depolarization, usually through the efflux of potassium ions from the cell.
A reduction in membrane potential is called hyperpolarization. This occurs when the inside of the cell becomes more negative than the outside, making it less likely for the cell to generate an action potential.
P wave
A wave of depolarization occurs when there is a sudden influx of positive ions, typically sodium ions, into the neuron, leading to a reversal of the cell's membrane potential. This helps in transmitting electrical signals along the neuron through a process known as action potential propagation.