The correct answer is: Bent.
The correct answer is: Bent.
a molecule with two bound atoms and one lone electron pair -apex
A molecule with four bonded atoms and no lone pairs on the central atom will have a tetrahedral shape. This occurs when the central atom is bonded to four other atoms, resulting in equal distances between the atoms, leading to a tetrahedral shape due to the arrangement of electron pairs around the central atom.
A molecule with two bonded groups and two lone pairs will have a bent or V-shaped geometry. The apex of the molecule will be where the two bonded groups meet, causing the lone pairs to be directed away from each other. This geometry is characteristic of molecules with a steric number of four and a tetrahedral electron geometry.
Three groups bound to it with no lone pairs
The correct answer is: Bent.
Four atoms bound to a central atom with no lone pairs
The correct answer is: Bent.
A molecule with two bound groups and two lone pairs would have a bent or V-shape molecular geometry. This arrangement results in a bond angle less than 180 degrees between the two bound groups. An example of such a molecule is water (H2O).
A molecule with two bound groups and two lone pairs would have a bent or angular shape. This geometry arises from the repulsion between the lone pairs, which occupy more space than the bonding pairs, resulting in a bond angle that is typically less than 109.5 degrees. An example of such a molecule is water (H₂O), where the two hydrogen atoms are bonded to the oxygen atom while the two lone pairs influence the overall shape.
A molecule with two bound atoms and one line electron pair
a molecule with two bound atoms and one lone electron pair -apex
A molecule with four bonded atoms and no lone pairs on the central atom will have a tetrahedral shape. This occurs when the central atom is bonded to four other atoms, resulting in equal distances between the atoms, leading to a tetrahedral shape due to the arrangement of electron pairs around the central atom.
A molecule with two bonded groups and two lone pairs will have a bent or V-shaped geometry. The apex of the molecule will be where the two bonded groups meet, causing the lone pairs to be directed away from each other. This geometry is characteristic of molecules with a steric number of four and a tetrahedral electron geometry.
three groups bound to it with no lone pairs
Three groups bound to it with no lone pairs
A molecule of hydrogen sulfide (H2S) would have a bent shape due to its molecular geometry. It consists of two hydrogen atoms bonded to a sulfur atom with lone pairs of electrons around the sulfur, causing the molecule to bend.