answersLogoWhite

0

Atomic radii increases moving down a group in the Periodic Table due to the increasing energy levels in the electron configuration and electrons filling in energy levels further away from the nucleus.

What else can I help you with?

Related Questions

What property increases going down the periodic table?

The atomic radius increases going down the periodic table due to the addition of more electron shells around the nucleus, leading to increased shielding effect and weaker attraction between the electrons and the nucleus.


Which of the following has the smallest atomic radius P AL S Si Cl?

Atomic radius increases going down the periodic table and going from right to left, meaning that Fr (Francium) has the largest atomic radius and He (Helium) has the smallest. Therefore, Cl<S<P<Si<Al So the answer is Cl


How does the atomic radius change from top to bottom in a group 1 and 2 in the periodic table?

Going down and to the left on the periodic table, atomic radius increases. Therefore, the smallest atomic radius is that of Helium (He), and the largest is that of Francium (Fr). Coincidentally, these are also the most and least reactive elements.


Smallest to largest atomic radius PotassiumMagnesiumCalciumRubidium?

Rubidium has the largest atomic radius, followed by potassium, calcium, and then magnesium. This trend is due to an increase in the number of electron shells and shielding effects as you move down the periodic table from potassium to rubidium.


What explains the observed trend in the atomic radii going down the periodic table?

The more energy levels that are occupied by electrons, the larger the atomic radius.


What trend is seen atom size going down the periodic table?

Excepting groups 5-12 of the periodic table.the atomic radius increase down in the group.


What property increases going down a group in periodic table?

Atomic size increases going down a group in the periodic table. This is because additional energy levels are being filled with electrons, leading to an increase in distance between the nucleus and the outermost electron shell.


What is the atomic radius of selenium if germanium's is 122 pm and arsenic's is 120 pm?

The atomic radius of selenium can be estimated to be approximately between 116 pm and 118 pm based on the trends in atomic radii going down a group in the periodic table. This is because atomic radius generally increases as you move down a group, so selenium's atomic radius would be smaller than arsenic's and germanium's.


How does calcium's atomic radius compared to magnesium radius and potassium radius?

The atomic radius of calcium is larger than magnesium but smaller than potassium. This trend is consistent with the periodic trend across Group 2 elements where atomic radius increases down the group due to additional electron shells. Additionally, going across a period from left to right, atomic radius decreases due to increasing nuclear charge pulling electrons closer.


What pattern or trend do you notice between atomic radius and electronegativity energy?

As atomic radius increases, electronegativity generally decreases. This trend occurs because as the atomic radius increases, the distance between the nucleus and valence electrons increases, resulting in weaker attraction between the nucleus and outer electrons. Consequently, atoms with larger atomic radii tend to have lower electronegativities.


What periodic trends exist for atomic radii?

As you move across a row on the periodic table, the atomic radii becomes smaller due to the attraction between positive protons and negative electrons. As you move down a column, the radii increase due to the addition of valance electrons.


Why do atomic radii generally get larger going down the periodic table?

Atomic radii generally increase going down the periodic table because the number of electron shells increases, leading to a larger atomic size. Additionally, the increasing nuclear charge is offset by increased electron shielding in larger atoms, allowing the outermost electrons to be further from the nucleus, making the atom larger.