When a charged particle is moved along an electric field line, it will experience a force in the direction of the field line. The work done on the particle depends on the distance it moves and the strength of the field. If the particle moves perpendicular to the field lines, then no work is done by the field.
When a charged particle is moved along an electric field line, it experiences a force in the direction of the field line. This force causes the particle to accelerate in the direction of the field line if the particle has the same charge as the field line, or decelerate if the charges are opposite.
An electric field does positive work on a charged particle when the direction of the electric field is the same as the direction of the particle's movement.
The direction of the force exerted on a charged particle is determined by the direction of the electric field. The force acts in the same direction as the electric field if the particle is positively charged, and in the opposite direction if the particle is negatively charged.
No, the strength of the electric field of a charged particle becomes weaker as the distance from the particle increases. The electric field strength follows an inverse square law relationship with distance, meaning it decreases as the distance from the charged particle increases.
The electric field around a charged particle points away from positive charges and towards negative charges.
When a charged particle is moved along an electric field line, it experiences a force in the direction of the field line. This force causes the particle to accelerate in the direction of the field line if the particle has the same charge as the field line, or decelerate if the charges are opposite.
An electric field does positive work on a charged particle when the direction of the electric field is the same as the direction of the particle's movement.
The direction of the force exerted on a charged particle is determined by the direction of the electric field. The force acts in the same direction as the electric field if the particle is positively charged, and in the opposite direction if the particle is negatively charged.
As the distance from a charged particle increases the strength of its electric field DECREASES.
No, the strength of the electric field of a charged particle becomes weaker as the distance from the particle increases. The electric field strength follows an inverse square law relationship with distance, meaning it decreases as the distance from the charged particle increases.
The electric field around a charged particle points away from positive charges and towards negative charges.
Yes, the strength of the electric field of a charged particle does increase as you move closer to the charged particle. This is because electric fields follow an inverse square law, meaning that the field strength is inversely proportional to the square of the distance from the charged particle. As you move closer, the distance decreases, leading to an increase in the electric field strength.
The electric field pattern is radial.
When a positively charged particle is released in an electric field, it will experience a force in the direction opposite to the field lines. This force will cause the particle to accelerate in the opposite direction of the field.
It's the electric field.
The formula for the work done by an electric field on a charged particle is given by W qEd, where W represents the work done, q is the charge of the particle, E is the electric field strength, and d is the distance the particle moves in the field.
Yes, the strength of an electric field from a charged particle is stronger closer to the particle and weaker as you move further away. The electric field decreases with distance according to the inverse square law, which means it decreases as the square of the distance from the charged particle.