Lead(II) nitrate and sodium iodide undergo a double displacement reaction to form sodium nitrate and lead(II) iodide, which is a slightly soluble yellow solid. The balanced chemical equation for this reaction is: Pb(NO3)2(aq) + 2NaI(aq) -> 2NaNO3(aq) + PbI2(s)
potassium nitrate would be left was an aqueous solution and lead iodide would be the precipitate
a precipitate. motha nacha -.0
Hydrogen iodide can be tested using silver nitrate solution. When hydrogen iodide is bubbled through silver nitrate solution, a yellow precipitate of silver iodide is formed. This confirms the presence of iodide ions in the sample.
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
When a solution of potassium iodide is added to lead nitrate, a yellow precipitate of lead iodide is formed. This is a double displacement reaction where the cations and anions switch partners to form the products.
Aqueous lead nitrate plus aqueous sodium iodide produce solid lead iodide and aqueous sodium nitrate.
Pb(NO3)2(aq)+2NaI(aq)=2NaNO3(aq)+PbI2(s)
potassium nitrate would be left was an aqueous solution and lead iodide would be the precipitate
a precipitate. motha nacha -.0
When aqueous solutions of silver nitrate and sodium iodide [note correct spelling] are mixed, silver iodide solid precipitates from the mixture.
Hydrogen iodide can be tested using silver nitrate solution. When hydrogen iodide is bubbled through silver nitrate solution, a yellow precipitate of silver iodide is formed. This confirms the presence of iodide ions in the sample.
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
Silver nitrate for example: AgI(s) silver iodide
When silver nitrate and strontium iodide react, a double displacement reaction occurs. Silver iodide and strontium nitrate are formed as products. Silver iodide is a yellow precipitate while strontium nitrate remains in solution.
A yellow precipitate of lead iodide is formed due to the reaction between potassium iodide and lead nitrate. This reaction is a double displacement reaction, where the potassium from potassium iodide swaps places with the lead from lead nitrate, forming the insoluble lead iodide.
When a solution of potassium iodide is added to lead nitrate, a yellow precipitate of lead iodide is formed. This is a double displacement reaction where the cations and anions switch partners to form the products.
A precipitate of Lead iodide and Potassium nitrate are formed