answersLogoWhite

0


Best Answer

Inside a safe dropped from a plane.

If there were a very good vacuum to drop them in, it would be close. The air resistance of a feather limits its falling velocity more than the resistance on the hammer. When the drag caused by friction equals the weight of the object, it cannot continue to accelerate and falls at a speed called its terminal velocity.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Where on earth can a hammer and feather drop at the same speed?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What force that makes a feather drop slower than a hammer on earth?

Air resistance.


What are some examples of air resistance and gravitational force?

1. when you drop a feather and a hammer the feather falls slower than the hammer


Drop feather and steel hammer at same time they hit ground at same time. why doesnt it work with earth?

It works in a vacuum. It won't work on Earth due to air pressure slowing the dropping feather due to friction.


Do objects fall at the same rate on a planet with no atmosphere?

No, because there is no air to slow the down. For deeper analysis, check youtube, hammer and feather experiment on the moon. They hit the ground at the same time on the moon because there is no atmosphere, but if you drop a hammer and a feather on earth the hammer, obviously, hits first.


Which scientists theory proved the Apollo 15 hammer-feather drop?

galalieo


Why can a feather and a hammer drop to the ground in the same time on the Moon?

Because there is no air on the Moon (it is too small to hold any appreciable atmosphere). Gravity accelerates all objects equally and it is only air resistance that makes a difference in the speed at which something falls on Earth.


What would happen if you droped a hammer and a feather on the Moon?

What would happen if you dropped a hammer and a feather on the earth and on the moon? The above experiment is supposed to prove the equivalence principle which states that the acceleration an object feels due to gravity does not depend on its mass, density, composition, colour or shape.Answer:If you drop a hammer and a feather from the same height on earth, the hammer will hit the ground first as the feather is slowed down drastically by air resistance.But on the moon, because it is a vacuum, and since the acceleration of an object is the same as the gravity i.e. a = g and the mass is not in the equation, all objects will have the same acceleration and hence the hammer should fall to the surface of moon at the same time as the feather but:"Both will hit the moon at the same time as believed by most scientists?"This may not be absolutely true since every object has its own gravity which is greater if its mass is greater. So the hammer has a gravity much greater than that of the feather. Therefore the combined gravity of the hammer and that of the moon (which pulls the hammer and moon towards each other) is greater than that of the feather and the moon.As such the hammer should collide with the moon marginally earlier than that between the feather and the moon, though this difference is so minute that we assume that the collisions occur simultaneously.However, if the hammer and feather are dropped together, then as the hammer's gravity pulls the moon towards itself, it also pull the moon towards the feather and as such the lucky feather may get a free ride and hits the moon at the same time as the hammer.To be fair, the experiment should be done dropping the objects individually e.g. feather first, then the hammer and then see whether the times taken are the same or not.All the above are valid only on the assumption that the centre of gravity is the part that hits the moon but since this is not necessarily true, we also have to take into account which part of the hammer or feather is nearest to the moon before the two objects were released (assuming that the centre of gravity of both objects are at the same level on release) !The real answer is that there is not enough data for us to know which will hit the moon first !The famous experiment by Astronaut Dave Scott on the moon is not very precise.Dr HW Looi


Would an object have the same density on the moon as it does on the earth?

Yes, it would have the same density. The volume of an object does not change no matter where it is. So on the moon the object would have the same mass and volume as it would on earth; therefore that object would have the same density. Density equals mass divided by volume.


Which astronaut dropped a hammer and falcon feather while on the moon?

Apollo 15 astronaut Dave Scott dropped the hammer and feather to show that since there is no air friction on the moon, and the acceleration of an object by gravity does not depend on the mass of the object.The above experiment is supposed to prove the equivalence principle which states that the acceleration an object feels due to gravity does not depend on its mass, density, composition, colour or shape."Both will hit the moon at the same time?"Answer:If you drop a hammer and a feather from the same height on earth, the hammer will hit the ground first as the feather is slowed down drastically by air resistance.But on the moon, because it is a vacuum, and since the acceleration of an object is the same as the gravity i.e. a = g and the mass is not in the equation, all objects will have the same acceleration and hence the hammer should fall to the surface of moon at the same time as the feather but:"Both will hit the moon at the same time as believed by most scientists?"This may not be absolutely true since every object has its own gravity which is greater if its mass is greater. So the hammer has a gravity much greater than that of the feather. Therefore the combined gravity of the hammer and that of the moon (which pulls the hammer and moon towards each other) is greater than that of the feather and the moon.As such the hammer should collide with the moon marginally earlier than that between the feather and the moon, though this difference is so minute that we assume that the collisions occur simultaneously.However, if the hammer and feather are dropped together, then as the hammer's gravity pulls the moon towards itself, it also pull the moon towards the feather and as such the lucky feather may get a free ride and hits the moon at the same time as the hammer.To be fair, the experiment should be done dropping the objects individually e.g. feather first, then the hammer and then see whether the times taken are the same or not.All the above are valid only on the assumption that the centre of gravity is the part that hits the moon but since this is not necessarily true, we also have to take into account which part of the hammer or feather is nearest to the moon before the two objects were released (assuming that the centre of gravity of both objects are at the same level on release) !The real answer is that there is not enough data for us to know which will hit the moon first !


How do you make a egg survive by dropping something on it?

drop a feather


What are some examples of gravational energy?

A free fall parachutist falling to earth, the effect of the moon and sun on ocean tides, a drop hammer in a workshop


Do all objects accelerate the same when they are dropped?

If we are to neglect air resistance, then yes. There is a video of the Apollo 15 astronauts putting this to the test on the moon, using a feather and a hammer. When the astronaut drops the objects, they hit the ground at the same time. The video is on YouTube.