Best Answer

The shorter the pendulum the more swings you get.

Q: Which length of the pendulum made the most number of swing?

Write your answer...

Submit

Still have questions?

Continue Learning about Physics

By dampening. This can be done by changing the length of the pendulum The period is 2*pi*square root of (L/g), where L is the length of the pendulum and g the acceleration due to gravity. A pendulum clock can be made faster by turning the adjustment screw on the bottom of the bob inward, making the pendulum slightly shorter.

The simple answer (what most high school teachers, for example, would say)is that the period (length of time for a swing) only depends on the length of thependulum. This is a pretty good approximation for a well-made pendulum.============================When you sit down to work out the period of a pendulum on paper, you draw a mass,hanging in gravity, from the end of a string that has no weight, with no air around it.When you turn the crank, you discover that the period of the pendulum ... the timeit takes for one complete back-and-forth swing ... depends only on the length ofthe string and the local acceleration of gravity, and that the pendulum never stops.When you build the real thing, you discover that your original analysis is a little bit 'off'.Your physical pendulum always stops after a while, and while it's still going, theperiod is slightly different from what you calculated. So you begin to do researchexperiments to figure out why.Eventually, you figure out that the weight of the string makes the effective lengthof the pendulum different from the actual length of the string, and that the pendulumloses energy and stops because it has to plow through air.What you do to reduce these influences:-- You use the lightest, strongest string you can find, and the heaviest mass thatthe string can hold, so that the mass at the end is huge compared to the mass ofthe string.-- You operate the whole pendulum in an evacuated tube ... with all the air pumped out.When you do that, you have a pendulum that's good enough, and close enoughto the theoretical calculation, that you can use it to measure the acceleration ofgravity in different places.

The first pendulum clock was made by Christian Huygens, a Dutch scientist, in 1656.

A swinging pendulum encounters "friction" called drag in air. It will do so in water, too. It's just that the viscosity of the air is so much less than that of water, so the pendulum moves with a ton more drag in water. It will move much more slowly in water, and will come to a stop dramatically sooner than an identical pendulum swung in air.

During the summer the pendulum which is generally made of metal, expands due to the rise in temperature. this causes the pendulum to move slower and hence the clock becomes slower.

Related questions

180 degrees

A shorter pendulum will make more swings per second. Or per minute. Or whatever.

The pendulum will take more time in air to stop completely in comparision with water

By dampening. This can be done by changing the length of the pendulum The period is 2*pi*square root of (L/g), where L is the length of the pendulum and g the acceleration due to gravity. A pendulum clock can be made faster by turning the adjustment screw on the bottom of the bob inward, making the pendulum slightly shorter.

Pendulums have been used for thousands of years as a time keeping device in various civilizations. Assuming that it is only displaced by a small angle, a pendulum wall have a period of 2pi*√(L/g) where L is the length of the pendulum and g is the acceeleration due to gravity, normally 9.81m/s². One of the cool things about pendulums is that if one is made with a length of one meter, it will have a period of 2.00607 seconds, meaning it will take just slightly more than one second to swing from one side to another.

Since the period of a simple pendulum (for short swings) in proportional to the square root of its length, then making the length one quarter of its original length would make the period one half of its original period.Periodapproximately = 2 pi square root (length/acceleration due to gravity)

As the arm supporting the pendulum expands in the warmer temperatures of summer, so the swing distance slightly increases, so taking longer to swing and slowing down the clock. Back in the colder winter weather, the pendulum support contracts, getting slightly shorter. This increases the speed of the swing and the timing is increased. So in summer time slows down, and in winter time speed up. This is when adjustment is usually made to regain the correct time.

Assuming that this question concerns a pendulum: there are infinitely many possible answers. Among these are: the name of the person swinging the pendulum, the colour of the pendulum, the day of the week on which the experiment is conducted, the mass of the pendulum, my age, etc.

I think you're saying that the pendulum itself is an iron bar.-- The period of the swing is determined by the pendulum's length. Whether the pendulumis a long distributed mass, or just all one lump down at the end, its effective length ineither case is the distance from the pivot to its center of mass.-- Rising temperature makes the iron bar longer, but doesn't change its mass. So itscenter of mass becomes farther from the pivot, and its period of swing increases.-- So higher temperature would make the clock run slower.This sounds like an elegant way to detect small differences in local gravity at differentplaces. I don't know for a fact, but I'll just bet that this is how it's actually done, witha portable instrument based on a pendulum-regulated timekeeping device.

The simple answer (what most high school teachers, for example, would say)is that the period (length of time for a swing) only depends on the length of thependulum. This is a pretty good approximation for a well-made pendulum.============================When you sit down to work out the period of a pendulum on paper, you draw a mass,hanging in gravity, from the end of a string that has no weight, with no air around it.When you turn the crank, you discover that the period of the pendulum ... the timeit takes for one complete back-and-forth swing ... depends only on the length ofthe string and the local acceleration of gravity, and that the pendulum never stops.When you build the real thing, you discover that your original analysis is a little bit 'off'.Your physical pendulum always stops after a while, and while it's still going, theperiod is slightly different from what you calculated. So you begin to do researchexperiments to figure out why.Eventually, you figure out that the weight of the string makes the effective lengthof the pendulum different from the actual length of the string, and that the pendulumloses energy and stops because it has to plow through air.What you do to reduce these influences:-- You use the lightest, strongest string you can find, and the heaviest mass thatthe string can hold, so that the mass at the end is huge compared to the mass ofthe string.-- You operate the whole pendulum in an evacuated tube ... with all the air pumped out.When you do that, you have a pendulum that's good enough, and close enoughto the theoretical calculation, that you can use it to measure the acceleration ofgravity in different places.

the period T of a rigid-body compound pendulum for small angles is given byT=2π√I/mgRwhere I is the moment of inertia of the pendulum about the pivot point, m is the mass of the pendulum, and R is the distance between the pivot point and the center of mass of the pendulum.For example, for a pendulum made of a rigid uniform rod of length L pivoted at its end, I = (1/3)mL2. The center of mass is located in the center of the rod, so R = L/2. Substituting these values into the above equation gives T = 2π√2L/3g. This shows that a rigid rod pendulum has the same period as a simple pendulum of 2/3 its length.

The first pendulum clock was made by Christian Huygens, a Dutch scientist, in 1656.