Top Answer

By knowing how to use the quadratic equation formula.

🙏🏿

0🤨

0😮

0😂

0Using the quadratic equation formula is a method of solving quadratic equations.

It means you are required to "solve" a quadratic equation by factorising the quadratic equation into two binomial expressions. Solving means to find the value(s) of the variable for which the expression equals zero.

Completing the square is one method for solving a quadratic equation. A quadratic equation can also be solved by factoring, using the square roots or quadratic formula. Solving quadratic equations by completing the square will always work when solving quadratic equations-You can also use division or even simply take a GCF, set the quantities( ) equal to zero, and subtract or add to solve for the variable

Completing the square is one method for solving a quadratic equation. A quadratic equation can also be solved by several methods including factoring, graphing, using the square roots or the quadratic formula. Completing the square will always work when solving quadratic equations and is a good tool to have. Solving a quadratic equation by completing the square is used in a lot of word problems.I want you to follow the related link that explains the concept of completing the square clearly and gives some examples. that video is from brightstorm.

using the quadratic formula or the graphics calculator. Yes, you can do it another way, by using a new method, called Diagonal Sum Method, that can quickly and directly give the 2 roots, without having to factor the equation. This method is fast, convenient and is applicable to any quadratic equation in standard form ax^2 +bx + c = 0, whenever it can be factored. It requires fewer permutations than the factoring method does, especially when the constants a, b, and c are large numbers. If this method fails to get answer, then consequently, the quadratic formula must be used to solve the given equation. It is a trial-and-error method, same as the factoring method, that usually takes fewer than 3 trials to solve any quadratic equation. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009)

You can solve a quadratic equation 4 different ways. graphing, which is quick but not reliable, factoring, completing the square and using the quadratic formula. There is a new fifth method, called Diagonal Sum Method, that can quickly and directly give the 2 roots in the form of 2 fractions, without having to factor the equation. It is fast, convenient, and is applicable whenever the equation can be factored. Finally, you can proceed solving in 2 steps any given quadratic equation in standard form. If a=1, solving the equation is much simpler. First, you always solve the equation in standard form by using the Diagonal Sum Method. If it fails to find answer, then you can positively conclude that the equation is not factorable, and consequently, the quadratic formula must be used. In the second step, solve the equation by using the quadratic formula.

There are 5 existing methods in solving quadratic equations. For the first 4 methods (quadratic formula, factoring, graphing, completing the square) you can easily find them in algebra books. I would like to explain here the new one, the Diagonal Sum Method, recently presented in book titled:"New methods for solving quadratic equations and inequalities" (Trafford 2009). It directly gives the 2 roots in the form of 2 fractions, without having to factor the equation. The innovative concept of the method is finding 2 fractions knowing their Sum (-b/a) and their Product (c/a). It is very fast, convenient and is applicable whenever the given quadratic equation is factorable. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if this new method fails to find the answer, then we can conclude that the equation can not be factored, and consequently, the quadratic formula must be used. This new method can replace the trial-and-error factoring method since it is faster, more convenient, with fewer permutations and fewer trials.

Here are two ways to know if a given quadratic equations can be factored (can be solved by factoring). 1. Calculate the Discriminant D = b^2 - 4ac. When D is a perfect square (its square root is a whole number), then the given equation can be factored. 2. Solve the equation by using the new Diagonal Sum method (Amazon e-book 2010). This method directly finds the 2 real roots without having to factor the equation. Solving usually requires fewer than 3 trials. If this method fails to get the answer, then we can conclude that the equation can not be factored, and consequently the quadratic formula must be used.

Yes FOIL method can be used with quadratic expressions and equations

In general, there are two steps in solving a given quadratic equation in standard form ax^2 + bx + c = 0. If a = 1, the process is much simpler. The first step is making sure that the equation can be factored? How? In general, it is hard to know in advance if a quadratic equation is factorable. I suggest that you use first the new Diagonal Sum Method to solve the equation. It is fast and convenient and can directly give the 2 roots in the form of 2 fractions. without having to factor the equation. If this method fails, then you can conclude that the equation is not factorable, and consequently, the quadratic formula must be used. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009) The second step is solving the equation by the quadratic formula. This book also introduces a new improved quadratic formula, that is easier to remember by relating the formula to the x-intercepts with the parabola graph of the quadratic function.

There is a new method, called Diagonal Sum Method, that quickly and directly give the 2 roots without having to factor the equation. The innovative concept of this method is finding 2 fractions knowing their sum (-b/a) and their product (c/a). It is fast, convenient and is applicable to any quadratic equation in standard form ax^2 + bx + c = 0, whenever it can be factored. If it fails to find answer, then the equation is not factorable, and consequently, the quadratic formula must be used. So, I advise you to proceed solving any quadratic equation in 2 steps. First, find out if the equation can be factored? How?. Use this new method to solve it. It usually takes fewer than 3 trials. If its fails then use the quadratic formula to solve it in the second step. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009)

There are so far 8 common methods to solve quadratic equations:GraphingFactoring FOIL methodCompleting the square.Using the quadratic formula (derived from algebraic manipulation of "completing the square" method).The Diagonal Sum Method. It quickly and directly gives the 2 real roots in the form of 2 fractions. In fact, it can be considered as a shortcut of the factoring method. It uses the Rule of Signs for Real Roots in its solving process. When a= 1, it can give the 2 real roots quickly without factoring. Example. Solve x^2 - 39x + 108 = 0. The Rule of Signs indicates the 2 real roots are both positive. Write the factor-sets of c = 108. They are: (1, 108), (2, 54), (3, 36)...Stop! This sum is 36 + 3 = 39 = -b. The 2 real roots are 3 and 36. No needs for factoring! When a is not one, this new method selects all probable root-pairs, in the form of 2 fractions. Then it applies a very simple formula to see which root-pair is the answer. Usually, it requires less than 3 trials. If this new method fails, then this given quadratic equation can not be factored, and consequently the quadratic formula must be used. Please see book titled:"New methods for solving quadratic equations and inequalities" (Amazon e-book 2010).The Bluma MethodThe factoring AC Method (Youtube). This method is considerably improved by a "new and improved AC Method", recently introduced on Google or Yahoo Search.The new Transforming Method, recently introduced, that is may be the best and fastest method to solve quadratic equations. Its strong points are: simple, fast, systematic, no guessing, no factoring by grouping, and no solving the binomials. To know this new method, read the articles titled:"Solving quadratic equations by the new Transforming Method" on Google or Yahoo Search.BEST METHODS TO SOLVE QUADRATIC EQUATIONS. A. When the equation can't be factored, the best choice would be the quadratic formula. How to know if the equation can't be factored? There are 2 ways:1. Start solving by the new Transforming Method in composing factor pairs of a*c (or c). If you can't find the pair whose sum equals to (-b), or b, then the equation can't be factored.2. Calculate the Discriminant D = b^2 - 4ac. If D isn't a perfect square, then the equation can't be factored.B. When the equation can be factored, the new Transforming Method would be the best choice.

One would use the quadratic formula for solving binomials that are otherwise hard to factor. You can find both real and imaginary solutions using this method, making it highly superior to factoring in this regard.

Finally, there are two methods to use, depending on if the given quadratic equation can be factored or not. 1.- The first one is the new Diagonal Sum Method, recently presented in book titled: "New methods for solving quadratic equations" (Trafford 2009). This method directly gives the two roots in the form of two fractions, without having to factor it. The innovative concept of this new method is finding 2 fractions knowing their product (c/a) and their sum (-b/a). This new method is applicable to any quadratic equation that can be factored. It can replace the existing trial-and-error factoring method since this last one contains too many more permutations. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if the new method fails to get the answers, then you can positively conclude that this equation can not be factored. Consequently, the quadratic formula must be used in solving. We advise students to always try to solve the given equation by the new method first. If the student gets conversant with this method, it usually take less than 2 trials to get answers. 2. the second one uses the quadratic formula that students can find in any algebra book. This formula must be used for all quadratic equations that can not be factored.

Well, that depends on what you mean "solve by factoring." For any quadratic equation, it is possible to factor the quadratic, and then the roots can be recovered from the factors. So in the very weak sense that every quadratic can be solved by a method that involves getting the factors and recovering the roots from them, all quadratic equations can be solved by factoring. However, in most cases, the only way of factoring the quadratic in the first place is to first find out what its roots are, and then use the roots to factor the quadratic (any quadratic polynomial can be factored as k(x - r)(x - s), where k is the leading coefficient of the polynomial and r and s are its two roots), in which case trying to recover the roots from the factors is redundant (since you had to know what the roots were to get the factors in the first place). So to really count as solving by factoring, it makes sense to require that the solution method obtains the factors by means that _don't_ require already knowing the roots of the polynomial. And in this sense, most quadratic equations are not solvable through factoring.

get a life and hobbies then this question wont even be relevent

I guess you mean the standard quadratic equation, of the form ax^2 + bx + c = 0.There are three main algebraic methods, namely: * Factoring * Completing the square * Using the quadratic formula Since you want five, here are a few more, but they are usually not very convenient to use for this particular type of equation: * Trial and error * Graphic the equation * Diverse iterative methods, such as Newton's method, etc.

In the special case when a =1, the factoring method results in finding 2 NUMBERS knowing their sum and their product. The process is simple. However, when the constants a, b, c are large numbers, and contain themselves many factors, then the factoring method becomes complicated and takes long time in the process. For examples, solving these equations by the factoring method will take lot of time because of the high number of permutations: (6x^2 - 11x - 35 = 0) ; (45x^2 + 74x - 55 = 0) ; (45x^2 - 152x - 36 = 0); (12x^2 + 5x - 72 = 0) There is a new method, called Diagonal Sum Method, that can quickly and directly give the 2 roots, WITHOUT HAVING TO FACTOR THE EQUATION. The innovative concept of the new method is finding 2 FRACTIONS knowing their sum (-b/a) and their product (c/a). It is faster, more convenient than the factoring method since it requires fewer permutations by using the rule of signs for real roots. It is applicable whenever the equation can be factored. So, I advise you to proceed solving any quadratic equation in 2 steps. First step, use the Diagonal Sum method to solve it. It usually takes fewer than 3 trials. If it fails, then the quadratic formula must be used in second step. See book title:" New method for solving quadratic equations and inequalities" (Trafford Publishing 2009)

The standard form of a quadratic equation is: ax^2 + bx + c = 0. Depending on the values of the constants (a, b, and c), a quadratic equation may have 2 real roots, one double roots, or no real roots.There are many "special cases" of quadratic equations.1. When a = 1, the equation is in the form: x^2 + bx + c = 0. Solving it becomes solving a popular puzzle: find 2 numbers knowing their sum (-b) and their product (c). If you use the new Diagonal Sum Method (Amazon e-book 2010), solving is fast and simple.Example: Solve x^2 + 33x - 108 = 0.Solution. Roots have opposite signs. Write factor pairs of c = -108. They are: (-1, 108),(-2, 54),(-3, 36)...This sum is -3 + 36 = 33 = -b. The 2 real roots are -3 and 36. There is no needs for factoring.2. Tips for solving 2 special cases of quadratic equations.a. When a + b + c = 0, one real root is (1) and the other is (c/a).Example: the equation 5x^2 - 7x + 2 = 0 has 2 real roots: 1 and 2/5b. When a - b + c = 0, one real roots is (-1) and the other is (-c/a)Example: the equation 6x^2 - 3x - 9 = 0 has 2 real roots: (-1) and (9/6).3. Quadratic equations that can be factored.The standard form of a quadratic equation is ax^2 + bx + c = 0. When the Discriminant D = b^2 - 4ac is a perfect square, this equation can be factored into 2 binomials in x: (mx + n)(px + q)= 0. Solving the quadratic equation results in solving these 2 binomials for x. Students should master how to use this factoring method instead of boringly using the quadratic formula.When a given quadratic equation can be factored, there are 2 best solving methods to choose:a. The "factoring ac method" (You Tube) that determines the values of the constants m, n, p, and q of the 2 above mentioned binomials in x.b. The Diagonal Sum Method (Amazon ebook 2010) that directly obtains the 2 real roots without factoring. It is also considered as "The c/a method", or the shortcut of the factoring method. See the article titled" Solving quadratic equations by the Diagonal Sum Method" on this website.4. Quadratic equations that have 2 roots in the form of 2 complex numbers.When the Discriminant D = b^2 - 4ac 5. Some special forms of quadratic equations:- quadratic equations with parameters: x^2 + mx - 7 + 0 (m is a parameter)- bi-quadratic equations: x^4 - 5x^2 + 4 = 0- equations with rational expression: (ax + b)/(cx + d) = (ex + f)- equations with radical expressions.

The quadratic formula is used all the time to solve quadratic equations, often when the factors are fractions or decimals but sometimes as the first choice of solving method. The quadratic formula is sometimes faster than completing the square or any other factoring methods. Quadratic formula find: -x-intercept -where the parabola cross the x-axis -roots -solutions

In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is Where x represents a variable, and a, b, and c, constants, with a ≠ 0. (If a = 0, the equation becomes a linear equation.) The constants a, b, and c, are called respectively, the quadratic coefficient, the linear coefficient and the constant term or free term. The term "quadratic" comes from quadratus, which is the Latin word for "square." Quadratic equations can be solved by factoring, completing the square, graphing, Newton's method, and using the quadratic formula (given below). One common use of quadratic equations is computing trajectories in projectile motion. Because it is in the form of ax^2+bx+c=0

Here are some methods you can use:* Trial and error. This works especially well if the solution is a small integer. * Factoring. You must first write the equation in such a form that you have zero on the right. * Completing the square. * Using the quadratic formula. The last two methods work in all cases. The quadratic formula is easier to work with in the general case.

at first the first person to solve the quadratic equation is from the middle kingdom of Egypt. Greeks were also able to solve the quadratic equation but that was on the unproper way. Greeks were able to solve the quadratic equation by geometric method or equlid's method. equlid's method contains only three quadratic equation. dipohantus have also solved the quadratic equations but he have solved by giving only two roots any they both were only of positive signs.After that arbhatya also gave the two formulas for quadratic equation but the bentaguptahave only accepted only one of them after theat some of the Indian mathematican have also solved the quadratic equation who gave the proper definations and formula and in this way quadratic equation have been formed. Prabesh Regmi Kanjirowa National School

Factoring by the AC method, difference of squares, perfect square trinomial. If not factorable by those ways, you can use the quadratic formula. You can also find zeros by synthetic division. If there are not any real solutions, then the solutions are said to be complex, they do not cross the x axis.

The first step, in solving a quadratic equation in a variable x using this method, is to complete the square defined by the terms in x2 and x, by adding and subtracting a suitable constant.

Trending Questions

Do potatoes have genders?
Asked By
Wiki User

What are examples of prefixes and suffixes?
Asked By
Wiki User

What pokediger1 password in roblox?
Asked By
Wiki User

How do you get 1000000 robux for free?
Asked By
Wiki User

Who was Anna Kreisling?
Asked By
Wiki User

What are the codes for the prodigy epics?
Asked By
Wiki User

Hottest Questions

How did chickenpox get its name?
Asked By
Wiki User

Do animals name each other?
Asked By
Danika Abbott

Previously Viewed

Unanswered Questions

What are the two conditions under which a diode is operated?
Asked By
Wiki User

How does acceptance of responsibility influence effective communication?
Asked By
Wiki User

What is the benefit of analyzing the market and alternative industries before individual securities?
Asked By
Wiki User

Mga positibo at negatibong epekto ng pananakop ng hapon sa Pilipinas?
Asked By
Wiki User

Slum children at play by Ruskin Bond summary?
Asked By
Wiki User

Does arsenio hall have ms?
Asked By
Wiki User

Ano ang mabuti at di mabuting epekto ng kalakalang galyon sa pamumuhay ng mga Filipino?
Asked By
Wiki User

Anu-ano sining ang kilala sa lalawigan ng Tarlac?
Asked By
Wiki User