No. At the point of insertion the sequence would be completely changed. This is called a frameshift mutation.
This would be a point mutation, which may be harmless, or could be lethal, depending on the protein in which it occurred.
In DNA, the other strand of the helix would have complementary base pairs to the original strand. Adenine pairs with thymine, and cytosine pairs with guanine. So, if one strand has the sequence ATTGC, the complementary strand would be TAACG.
They would be described as being complementary - as in complementary base pairing.
To determine the complementary DNA strand, you would pair each base of the original DNA strand with its corresponding complementary base: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the original strand is ATCG, the complementary strand would be TAGC. This base-pairing rule ensures that the two strands of DNA are complementary, allowing for proper replication and function.
The complementary DNA strand to the CGA CT strand would be GCT AG. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original strand is matched with its complementary base to form the new strand.
If the fourth base adenine in the original DNA strand had been replaced with thymine, then the corresponding mRNA would have an uracil instead of an adenine. This change would lead to a different amino acid being incorporated into the protein during translation, potentially resulting in a different protein being formed depending on the specific codon affected.
This would be a point mutation, which may be harmless, or could be lethal, depending on the protein in which it occurred.
This is called a "mutation." What ends up happening depends on where the base that changed was located. If the changed base is on the side of the DNA strand that is not used in making mRNA, there will be no difference in the final protein made whatsoever. If the mutation occurs in a part of the DNA that is not coded to make a protein (so called "junk" DNA), there will also be no change in the final protein, because there won't be a protein made. Even if the mutation occurs in a segment of DNA that eventually makes a protein, if the replacement base causes the mRNA to code for an amino acid that is similar to the original base, there will be little change. There is more to it, but that will probably suffice.
This is called a "mutation." What ends up happening depends on where the base that changed was located. If the changed base is on the side of the DNA strand that is not used in making mRNA, there will be no difference in the final protein made whatsoever. If the mutation occurs in a part of the DNA that is not coded to make a protein (so called "junk" DNA), there will also be no change in the final protein, because there won't be a protein made. Even if the mutation occurs in a segment of DNA that eventually makes a protein, if the replacement base causes the mRNA to code for an amino acid that is similar to the original base, there will be little change. There is more to it, but that will probably suffice.
This is called a "mutation." What ends up happening depends on where the base that changed was located. If the changed base is on the side of the DNA strand that is not used in making mRNA, there will be no difference in the final protein made whatsoever. If the mutation occurs in a part of the DNA that is not coded to make a protein (so called "junk" DNA), there will also be no change in the final protein, because there won't be a protein made. Even if the mutation occurs in a segment of DNA that eventually makes a protein, if the replacement base causes the mRNA to code for an amino acid that is similar to the original base, there will be little change. There is more to it, but that will probably suffice.
A TG CAGATTCTCTAAG
The base sequence CAGACT corresponds to the DNA strand, and it would be complementary to the RNA strand with the sequence GUCUGA. Therefore, the original strand is the DNA strand.
In DNA, the other strand of the helix would have complementary base pairs to the original strand. Adenine pairs with thymine, and cytosine pairs with guanine. So, if one strand has the sequence ATTGC, the complementary strand would be TAACG.
They would be described as being complementary - as in complementary base pairing.
A mismatched base would mean a mutation of the genetic code for the RNA strand. The wrong amino acid would be produced and then the wrong protein. This would result in a defect or maybe a disease or death depending on how many other normal cells are present.
To determine the complementary DNA strand, you would pair each base of the original DNA strand with its corresponding complementary base: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the original strand is ATCG, the complementary strand would be TAGC. This base-pairing rule ensures that the two strands of DNA are complementary, allowing for proper replication and function.
The complementary DNA strand to the CGA CT strand would be GCT AG. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original strand is matched with its complementary base to form the new strand.