Formula= required molarity (M) X Molecular weight X reuired volume (V)
M= W/M.W X 1/V (lit)
for example to prepare 250 ml of 0.1 M potassium permanganate (m.w 158.04)
0.1 x 158.04 x 0.25 = 3.951 g of potassium permanganate dissolve in 250 ml of distilled water
To prepare 4N potassium chloride solution, dissolve 149.5 g of potassium chloride in 1 liter of water. This will give you a solution with a concentration of 4N. Make sure to use a balance to accurately measure the amount of potassium chloride needed.
To prepare a standard solution of potassium iodate, you would need to weigh out a known quantity of potassium iodate, dissolve it in a known volume of water, and make up the solution to a specific volume using a volumetric flask. This process allows you to accurately determine the concentration of the solution.
To prepare a 1000 ppm potassium solution, you would dissolve 1 gram of potassium salt in 1 liter of water (1000 mL). This would give you a solution where the concentration of potassium is 1000 parts per million (ppm), which means there is 1 milligram of potassium for every kilogram of solution.
To prepare a 0.1 N alcoholic potassium hydroxide solution, you would mix potassium hydroxide pellets with a calculated amount of alcohol, such as ethanol, in a specific volume to achieve the desired concentration. It is important to handle potassium hydroxide with care due to its corrosive nature, and protective equipment should be worn during preparation. After mixing the components thoroughly, the solution should be standardized using a suitable acid to verify its concentration.
To prepare one normal solution of potassium nitrate, you would dissolve 101.1 grams of potassium nitrate in enough water to make 1 liter of solution. This solution will have a concentration of 1 mole per liter, which is considered a normal solution. Make sure to use a balance to accurately measure the mass of potassium nitrate and a volumetric flask to ensure a final volume of 1 liter.
To prepare 4N potassium chloride solution, dissolve 149.5 g of potassium chloride in 1 liter of water. This will give you a solution with a concentration of 4N. Make sure to use a balance to accurately measure the amount of potassium chloride needed.
To prepare a standard solution of potassium iodate, you would need to weigh out a known quantity of potassium iodate, dissolve it in a known volume of water, and make up the solution to a specific volume using a volumetric flask. This process allows you to accurately determine the concentration of the solution.
To prepare iodine solution, dissolve iodine crystals in a mixture of water and potassium iodide (KI). The ratio of iodine to KI will determine the concentration of the solution. The solution should be stored in a dark bottle to prevent degradation from light exposure.
To prepare a 1000 ppm potassium solution, you would dissolve 1 gram of potassium salt in 1 liter of water (1000 mL). This would give you a solution where the concentration of potassium is 1000 parts per million (ppm), which means there is 1 milligram of potassium for every kilogram of solution.
To prepare a 0.1 N alcoholic potassium hydroxide solution, you would mix potassium hydroxide pellets with a calculated amount of alcohol, such as ethanol, in a specific volume to achieve the desired concentration. It is important to handle potassium hydroxide with care due to its corrosive nature, and protective equipment should be worn during preparation. After mixing the components thoroughly, the solution should be standardized using a suitable acid to verify its concentration.
To prepare 1000 ppm (parts per million) solution of bromate from potassium bromate, you will need to dissolve 1 gram of potassium bromate in 1 liter of water. This will give you a solution with a concentration of 1000 ppm of bromate.
To prepare a 50% potassium carbonate solution, you would mix equal parts of potassium carbonate powder with water. For example, to make 100mL of 50% solution, you would mix 50g of potassium carbonate with 50mL of water. Stir until the powder is fully dissolved to achieve the desired concentration.
To prepare one normal solution of potassium nitrate, you would dissolve 101.1 grams of potassium nitrate in enough water to make 1 liter of solution. This solution will have a concentration of 1 mole per liter, which is considered a normal solution. Make sure to use a balance to accurately measure the mass of potassium nitrate and a volumetric flask to ensure a final volume of 1 liter.
To prepare 0.1N potassium permanganate solution, dissolve 3.16 grams of potassium permanganate in 1 liter of water. This will give you a solution with a normality of 0.1N.
To prepare a 40% potassium chloride solution in 100g of water, you would need to calculate the mass of potassium chloride required. Since the solution is 40% potassium chloride, that means 40g of the total solution mass must be potassium chloride. Therefore, you would need to add 40g of potassium chloride to the 100g of water to prepare the solution.
To prepare a 40% solution of potassium sodium tartrate, you would need to weigh out the appropriate amount of the salt and dissolve it in a specific volume of water to get the desired concentration. For example, to prepare 100mL of a 40% solution, you would mix 40g of potassium sodium tartrate with enough water to bring the final volume to 100mL.
To prepare 160 grams of potassium acetate with a 5% w/w concentration, you would need to calculate the mass of the potassium acetate in the solution. Since the concentration is given as a percentage by weight, 5% of 160 grams is 8 grams of potassium acetate. The remaining mass in the solution would be water. Therefore, you would need 152 grams of water to prepare 160 grams of potassium acetate with a 5% w/w concentration.