It increases the collisions that have enough energy to react (apex)
It provides energy to overcome the activation energy.
No - except in extremes and as part of nuclear processes.
It increases the kinetic energy of the molecules (APEX)
Gas pressure is affected by factors such as temperature, volume, and the number of gas molecules present. Increasing the temperature or decreasing the volume of a gas will result in an increase in pressure, while increasing the number of gas molecules will also increase the pressure.
In general, but not always, increasing the temperature will increase the rate of the forward reaction. This is because an increase in temperature increases the speed at which the molecules move, increasing the kinetic energy, and thus making it easier to reach the activation energy. Of course, this is true only for endothermic reactions. If the reaction is exothermic, then increasing the temperature will slow down the forward reaction.
Increasing the temperature the number of particles remain constant and the pressure increase.
It provides energy to overcome the activation energy.
No - except in extremes and as part of nuclear processes.
Increase in temperature cause the particles to move faster, which in turn would increase the number of collisions. If the volume did not change and the temperature increased, the pressure would also increase.
It increases the kinetic energy of the molecules (APEX)
Gas pressure is affected by factors such as temperature, volume, and the number of gas molecules present. Increasing the temperature or decreasing the volume of a gas will result in an increase in pressure, while increasing the number of gas molecules will also increase the pressure.
In general, but not always, increasing the temperature will increase the rate of the forward reaction. This is because an increase in temperature increases the speed at which the molecules move, increasing the kinetic energy, and thus making it easier to reach the activation energy. Of course, this is true only for endothermic reactions. If the reaction is exothermic, then increasing the temperature will slow down the forward reaction.
Increasing the number of molecules in a fixed volume will result in an increase in pressure due to more frequent collisions between molecules. This relationship is described by the ideal gas law, where pressure is directly proportional to the number of molecules and temperature, and inversely proportional to volume.
The combined gas equation is used to calculate the behaviour of gas under different temperature, pressure and number of particles. PV = nRT Where P is pressure V is volume n is the number of moles T is the temperature in Kelvin and R is the Ideal Gas Constant. If P is in kPa and V is in dm3 then R = 8.31.
An increase in temperature or a decrease in volume would call the pressure to increase. Apex- increasing the number of gas particles
When the number of particle collisions increase the rate of chemical reactions also increase.
Heat will increase the rate of any chemical reaction. This is because a chemical reaction require three things: The molecules to collide, collide with enough energy, and collide in the correct orientation. With increased heat you increase the number of collision and the energy with which molecules collide. For non-organic enzymatic reactions(ex platinum catalyzes several hydrogen reaction) heat will speed up the reaction. For organic reactions heat will only increase the rate up to a point. If the temperature gets too hot it begins to denature the enzyme and the enzyme will no longer work.