The element tungsten (symbol W, atomic number 74) has the electron configuration
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d4
and the abbreviated noble gas form
[Xe] 4f14 5d4 6s2
The expected ground-state electron configuration of copper is ; however, the actual configuration is because a full dsubshell is particularly stable. There are 18 other anomalous elements for which the actual electron configuration is not what would be expected.
The ground-state electron configuration for krypton (Kr) is [Ar] 4s² 3d¹⁰ 4p⁶. This means that krypton has a total of 36 electrons distributed among its electron shells.
The electron configuration of 1s22s22p3s1 is not the ground state electron configuration of any element. This configuration contains 8 electrons, which in the ground state would be oxygen. The ground state configuration of oxygen is 1s22s22p4.
The ground-state electron configuration for beryllium is 1s2 2s2. Beryllium has 4 electrons, with two in the 1s orbital and two in the 2s orbital.
The ground state electron configuration of bromine is Ar 4s 3d 4p.
The expected ground-state electron configuration of copper is ; however, the actual configuration is because a full dsubshell is particularly stable. There are 18 other anomalous elements for which the actual electron configuration is not what would be expected.
The ground-state electron configuration for krypton (Kr) is [Ar] 4s² 3d¹⁰ 4p⁶. This means that krypton has a total of 36 electrons distributed among its electron shells.
The electron configuration of 1s22s22p3s1 is not the ground state electron configuration of any element. This configuration contains 8 electrons, which in the ground state would be oxygen. The ground state configuration of oxygen is 1s22s22p4.
The ground-state electron configuration for beryllium is 1s2 2s2. Beryllium has 4 electrons, with two in the 1s orbital and two in the 2s orbital.
You think probably at Unbinilium (120Ubn) an element not still obtained. The supposed electron configuration of Ubn will be [Uuo]7s2.
The ground state electron configuration for nitrogen is [He]2s2.2p3.
The ground state electron configuration of bromine is Ar 4s 3d 4p.
The ground-state electron configuration for the V3 ion is Ar 3d2.
The first-row transition metal with the most unpaired electrons is manganese (Mn). Its expected ground-state electron configuration is [Ar] 3d5 4s2, meaning it has 5 unpaired electrons in the 3d subshell.
The ground state electron configuration for iron (Fe) is Ar 3d6 4s2.
The ground state electron configuration of iron (Fe) is Ar 3d6 4s2.
Ground state electron configuration of zinc (Zn): [Ar]3d104s2.