answersLogoWhite

0

The first, and perhaps most important, relationship between current, voltage, and resistance is called Ohm's Law, discovered by Georg Simon Ohm and published in his 1827 paper, The Galvanic Circuit Investigated Mathematically. Ohm's principal discovery was that the amount of electric current through a metal conductor in a circuit is directly proportional to the voltage impressed across it, for any given temperature. Ohm expressed his discovery in the form of a simple equation, describing how voltage, current, and resistance interrelate:

E = IR

In this algebraic expression, voltage (E) is equal to current (I) multiplied by resistance (R). Using algebra techniques, we can manipulate this equation into two variations, solving for I and for R, respectively: I = E/R and R = E/I.

answer discovered that relation only after VOLTA establish the voltage relationship and AMPERE discovered the current relationship. and of course WATTS establish the power.521

R=V

Resistance

OHMS

oli

User Avatar

Vita Kulas

Lvl 10
3y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the current flowing through a wire and the potential difference across it?

The relationship between the current flowing through a wire and the potential difference across it is described by Ohm's Law. Ohm's Law states that the current (I) flowing through a wire is directly proportional to the potential difference (V) across it, and inversely proportional to the resistance (R) of the wire. Mathematically, this relationship is represented as V I R.


What is the relationship between potential difference and capacitance in a capacitor?

The relationship between potential difference and capacitance in a capacitor is that the potential difference across a capacitor is directly proportional to its capacitance. This means that as the capacitance of a capacitor increases, the potential difference across it also increases, and vice versa.


What is the relationship between the electric field between two plates and the potential difference across them?

The electric field between two plates is directly proportional to the potential difference across them. This relationship is described by the equation E V/d, where E is the electric field, V is the potential difference, and d is the distance between the plates.


What is the relationship between electric potential and a wire in an electrical circuit?

The electric potential in a wire in an electrical circuit is the amount of electric potential energy per unit charge. As the wire carries current, the electric potential decreases along the wire due to the resistance of the wire. This relationship is described by Ohm's Law, which states that the electric potential difference across a wire is directly proportional to the current flowing through it and inversely proportional to the resistance of the wire.


What is the relationship between voltage and electric potential energy difference?

Voltage is a measure of the electric potential energy difference between two points in an electric field. The greater the voltage, the greater the electric potential energy difference between the two points.

Related Questions

What is the relationship between the current flowing through a wire and the potential difference across it?

The relationship between the current flowing through a wire and the potential difference across it is described by Ohm's Law. Ohm's Law states that the current (I) flowing through a wire is directly proportional to the potential difference (V) across it, and inversely proportional to the resistance (R) of the wire. Mathematically, this relationship is represented as V I R.


Graph of resistance of filament lamp against potential difference?

As potential difference increases in a filament lamp, resistance also increases due to an increase in temperature. The relationship between resistance and potential difference in a filament lamp is non-linear due to the temperature-dependent nature of resistance in the filament material. At low voltages, the resistance is relatively low, but as the temperature of the filament increases with higher voltages, the resistance also increases.


What is the relationship between potential difference and capacitance in a capacitor?

The relationship between potential difference and capacitance in a capacitor is that the potential difference across a capacitor is directly proportional to its capacitance. This means that as the capacitance of a capacitor increases, the potential difference across it also increases, and vice versa.


What is the relationship between the electric field between two plates and the potential difference across them?

The electric field between two plates is directly proportional to the potential difference across them. This relationship is described by the equation E V/d, where E is the electric field, V is the potential difference, and d is the distance between the plates.


What is the relationship between electric potential and a wire in an electrical circuit?

The electric potential in a wire in an electrical circuit is the amount of electric potential energy per unit charge. As the wire carries current, the electric potential decreases along the wire due to the resistance of the wire. This relationship is described by Ohm's Law, which states that the electric potential difference across a wire is directly proportional to the current flowing through it and inversely proportional to the resistance of the wire.


What is the relationship between voltage and electric potential energy difference?

Voltage is a measure of the electric potential energy difference between two points in an electric field. The greater the voltage, the greater the electric potential energy difference between the two points.


How can you calculate the potential difference between two points in a circuit?

To calculate the potential difference between two points in a circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). The formula is V I x R. By knowing the current flowing through the circuit and the resistance between the two points, you can calculate the potential difference.


What are Ohms Law and the Power Law?

Ohms Law is used for the measurement of resistance. You can find the resistance in a series circuit using this equation; amps=volts/resistance or volts=amps x resistance.The Power Law is used to find the wattage in the circuit. You can find the amount of watts using this equation: watts=volts x amps.CommentOhm's Law has nothing whatsoever to do with either resistance or power.The equation, R = E/I, is derived from the definition of the ohm, and not from Ohm's Law.Ohm's Law simply describes a linear relationship between the potential difference across a conductor and the current through it. It does NOT describe the relationship between potential difference, current, and resistance.


Suppose a parallel plate capacitor (with capacitance) is connected to a battery, what is the relationship between the charge stored on the capacitor and the potential difference across its plates?

The relationship between the charge stored on a capacitor and the potential difference across its plates is that the charge stored on the capacitor is directly proportional to the potential difference across its plates. This relationship is described by the formula Q CV, where Q is the charge stored on the capacitor, C is the capacitance of the capacitor, and V is the potential difference across the plates.


What is the relationship between voltage and potential difference in an electrical circuit?

Voltage and potential difference are essentially the same thing in an electrical circuit. Voltage is the measure of potential difference between two points in a circuit. In other words, voltage is the force that pushes electric charges through a circuit, and potential difference is the measure of this force.


What is the Relationship between resistance and inductance in a RL circuit?

What is the Relationship between resistance and inductance in a RL circuit?


What is the relationship between potential difference and voltage in an electrical circuit?

Potential difference and voltage are essentially the same thing in an electrical circuit. Voltage is the measure of potential difference between two points in a circuit, indicating the amount of energy that can be transferred between those points. In other words, potential difference is the technical term for voltage in the context of electrical circuits.