12.9L
Using the ideal gas law, V = (nRT)/P, where V is volume, n is moles, R is the gas constant, T is temperature in Kelvin, and P is pressure, we can calculate the volume to be 7.34 L.
To calculate the volume of a pure zinc sample, use the formula: volume = mass / density. The density of zinc is approximately 7.14 g/cm³. Therefore, the volume of the 4.50 g sample of zinc is calculated as follows: volume = 4.50 g / 7.14 g/cm³ ≈ 0.630 cm³.
According to the Kinetic Molecular Theory, pressure is the result of gas molecules colliding with the walls of the container. As the volume of the gas sample decreases, the frequency of collisions increases, leading to an increase in pressure. Conversely, as the volume increases, the frequency of collisions decreases, leading to a decrease in pressure.
To calculate the mass of the sample using dimensional analysis, you would use the expression: mass = volume × density Substitute the given values for volume (10.0 mL) and density (7.87 g/mL) into the expression to calculate the mass of the iron sample.
Drop it in water. Fill a graduated cyllinder with water to cover the sample and record the volume. Then gently lower the rock sample into the water and record how much the water rose. The difference is the volume of the rock. Drop it in water. Fill a graduated cyllinder with water to cover the sample and record the volume. Then gently lower the rock sample into the water and record how much the water rose. The difference is the volume of the rock.
Volume of a sample = (its mass) divided by (its density)
You calculate the volume of three-dimensional figures, not of numbers like pi.
More pressure means less volume. Calculate the ratio of pressure, then divide the 4.2 liters by that ratio.This assumes: * That the temperature doesn't change. * That the gas behaves like an ideal gas.
The core sample is a cylinder. The volume of any cylinder is (pi) x (radius)2 x (length).
Using the ideal gas law, V = (nRT)/P, where V is volume, n is moles, R is the gas constant, T is temperature in Kelvin, and P is pressure, we can calculate the volume to be 7.34 L.
To calculate the volume of a pure zinc sample, use the formula: volume = mass / density. The density of zinc is approximately 7.14 g/cm³. Therefore, the volume of the 4.50 g sample of zinc is calculated as follows: volume = 4.50 g / 7.14 g/cm³ ≈ 0.630 cm³.
Density of a substance = (mass of a sample of the substance) divided by (volume of the same sample)
Using the ideal gas law equation, we can calculate the new volume of the gas. At STP, the pressure is 1 atm, which means 50 atm is 50 times greater. So the new volume would be 1.55L / 50 = 0.031L, when the pressure is increased to 50 atm.
To calculate the percent of air content in a soil sample, you need to determine the volume of air in the soil and divide it by the total volume of the sample. This can be done by measuring the bulk density of the soil and the particle density, then subtracting the particle density from the bulk density to get the volume of air. Finally, divide the volume of air by the total volume and multiply by 100 to get the percentage.
The volume of the sample will decrease as it cools down due to thermal contraction. To calculate the new volume, you can use the formula for thermal expansion: V2 = V1 * (1 + β*(T2 - T1)), where V1 = 1.75 L, T1 = 25°C, T2 = 0°C, and β is the coefficient of volume expansion for the substance at constant pressure.
You cannot. If you know the volume, temperature and pressure of a pencil, you will be no closer to knowing its mass!
According to the Kinetic Molecular Theory, pressure is the result of gas molecules colliding with the walls of the container. As the volume of the gas sample decreases, the frequency of collisions increases, leading to an increase in pressure. Conversely, as the volume increases, the frequency of collisions decreases, leading to a decrease in pressure.