9.81
A pulling force in a rope is called tension. Tension is the force exerted by a rope when it is pulled taut by two opposing forces.
The tension in the rope at that point is the force pulling in opposite directions at the point where the rope is being held or attached.
The reaction force to you pulling on a rope is the tension force exerted by the rope in the opposite direction. This tension force is equal in magnitude and opposite in direction to the force you apply to the rope.
In that case (ignoring the weight of the rope, for simplicity), the tension at any point of the rope will also be 100 N.
The direction of tension in a rope is away from the object to which the force is being applied. It is a pulling force that stretches the rope and opposes any external forces trying to compress or shorten it.
They are equal.
If the rope is hanging vertical ... one end from the ceiling and the other end to the bucket ... then the tension in the rope is 41.16 newtons (9.26 pounds).
A rope that hangs a person is called a noose.
100n
143
A bellpull is a rope which hangs to a bell, or a handle which is attached to a rope which rings a bell.
A pulling force in a rope is called tension. Tension is the force exerted by a rope when it is pulled taut by two opposing forces.
The tension in the rope at that point is the force pulling in opposite directions at the point where the rope is being held or attached.
The reaction force to you pulling on a rope is the tension force exerted by the rope in the opposite direction. This tension force is equal in magnitude and opposite in direction to the force you apply to the rope.
In a simple case of lifting a weight using a pulley, there are two ways to do it and two different results. First, attach a pulley to the ceiling, and a rope to the weight which is on the floor. Run the rope through the pulley. Now we simply pull down on the rope and the weight is lifted up. In the second case, we attach one end of the rope to the ceiling, the pulley to the weight, and pass the unattached end of the rope through the pulley. Now we have to pull the rope up, and the weight is lifted. Now let's look at each job and what happens. In the first case, pull the rope tight without lifting and hold the rope at the top, next to the pulley. If you now pull the rope all the way down to the floor, the weight goes all the way up to the ceiling. Note also that the tension in the rope is equal to the weight being lifted and that there is only one tensioned rope pulling the weight upwards. Passing over the pulley changes the direction of the tension in the rope but doesn't change it's pulling power. Pulling that rope from ceiling to floor is exactly the same as lifting the weight from floor to ceiling. In the second case, tighten the rope before lifting and hold the rope where it exits the pulley on the weight. Now pull and your hand moves from there to the ceiling - about the same distance (but the other way) as you moved your hand in the other case. However, notice now that the weight is only half way to the ceiling. It is hanging on a loop of rope, one side going to the hook and the other going to your hand. This suggests that the weight is shared by these two parts of the rope and therefore the tension in each piece only needs to be half the weight. Your hand is holding half the weight. The ceiling hook is still holding the other half. To finish the job, you will have to keep pulling more rope - all the rope which is still there from hook to weight pulley and back to your hand. That's the floor to ceiling distance. In the second case, you pull twice as much rope to finish the job. And because it takes twice as long, it only needs half the force at any stage.
In that case (ignoring the weight of the rope, for simplicity), the tension at any point of the rope will also be 100 N.
The direction of tension in a rope is away from the object to which the force is being applied. It is a pulling force that stretches the rope and opposes any external forces trying to compress or shorten it.