That would depend on what you consider "large".
The size of an object's momentum = (its mass) x (its speed).
So, more mass and more speed result in more momentum.
False. Momentum is a product of an object's mass and velocity, so even if the object is small, it can have a large momentum if it has a high velocity. It doesn't need to be stationary to have a large momentum.
The larger the momentum, the harder it will be to stop it. Thus, the larger the force needed to decelarate the object. Since momentum is directly proportional to the velocity, the larger the momentum, the larger the velocity.
Yes. Momentum is based on mass and velocity, not physical size. 1 kg of styrofoam moving at 100 m/s has the same momentum as 1 kg of gold moving at 100 m/s, but the piece of styrofoam will be over 1000 times the size. Additionally, since the formula for momentum is mass times velocity, a 10 kg piece of gold moving at 10 m/s has the same momentum as a 1 kg piece of gold moving at 100 m/s. They both have a momentum of 100 kg-m/s.
The large truck moving at 30 miles per hour will have more momentum because momentum is directly proportional to an object's mass and velocity. Since the large truck has more mass than the small truck, it will have more momentum at the same speed.
Newtons First Law of Motion states that an object with a given momentum will continue to posses that same momentum until the object is acted on by a force in which case it will undergo a change in momentum. Inertia is a measure of an objects tendency to resist a change in momentum. Massive bodies have a large inertia. If a massive body is in motion its momentum is given by the product of the mass and the velocity of that body. Newtons first law says that if a force acts on this body its momentum will change. But since the body has a large inertia this change is small. For example, if a small space pebble collides with a large asteroid that has a constant velocity and thus constant momentum, the force is small relative to the inertia of the asteroid so the momentum only changes a little bit.
False. Momentum is a product of an object's mass and velocity, so even if the object is small, it can have a large momentum if it has a high velocity. It doesn't need to be stationary to have a large momentum.
The larger the momentum, the harder it will be to stop it. Thus, the larger the force needed to decelarate the object. Since momentum is directly proportional to the velocity, the larger the momentum, the larger the velocity.
Yes. Momentum is based on mass and velocity, not physical size. 1 kg of styrofoam moving at 100 m/s has the same momentum as 1 kg of gold moving at 100 m/s, but the piece of styrofoam will be over 1000 times the size. Additionally, since the formula for momentum is mass times velocity, a 10 kg piece of gold moving at 10 m/s has the same momentum as a 1 kg piece of gold moving at 100 m/s. They both have a momentum of 100 kg-m/s.
The large truck moving at 30 miles per hour will have more momentum because momentum is directly proportional to an object's mass and velocity. Since the large truck has more mass than the small truck, it will have more momentum at the same speed.
Newtons First Law of Motion states that an object with a given momentum will continue to posses that same momentum until the object is acted on by a force in which case it will undergo a change in momentum. Inertia is a measure of an objects tendency to resist a change in momentum. Massive bodies have a large inertia. If a massive body is in motion its momentum is given by the product of the mass and the velocity of that body. Newtons first law says that if a force acts on this body its momentum will change. But since the body has a large inertia this change is small. For example, if a small space pebble collides with a large asteroid that has a constant velocity and thus constant momentum, the force is small relative to the inertia of the asteroid so the momentum only changes a little bit.
An object with the least momentum would be one that is either stationary or moving very slowly. Momentum is the product of an object's mass and velocity, so an object with a small mass and low speed would have the least momentum.
An object with a small mass and low velocity would have the least momentum. Momentum is the product of an object's mass and velocity, so a combination of low mass and low velocity would result in the least momentum.
Yes, it is possible for a bullet to have the same momentum as a truck if the bullet is traveling at a much higher velocity than the truck. Momentum is calculated as mass times velocity, so a small object like a bullet can have the same momentum as a larger object like a truck if its velocity is much greater.
The wavelength of a macroscopic object is inversely proportional to its momentum, but in practice, the wavelength of macroscopic objects is extremely small due to their large mass. This small wavelength results in negligible quantum effects on their behavior, making their classical behavior dominant.
The rules are the same, but the quantum effects are more relevant for small objects. For example, the Heisenberg Uncertainty Principle states that the product in the uncertainties in position and momentum can't go below a certain limit. Ordinary-sized object have such a huge mass, and thus, such a huge momentum, that the Uncertainty Principle can safely be ignored.The rules are the same, but the quantum effects are more relevant for small objects. For example, the Heisenberg Uncertainty Principle states that the product in the uncertainties in position and momentum can't go below a certain limit. Ordinary-sized object have such a huge mass, and thus, such a huge momentum, that the Uncertainty Principle can safely be ignored.The rules are the same, but the quantum effects are more relevant for small objects. For example, the Heisenberg Uncertainty Principle states that the product in the uncertainties in position and momentum can't go below a certain limit. Ordinary-sized object have such a huge mass, and thus, such a huge momentum, that the Uncertainty Principle can safely be ignored.The rules are the same, but the quantum effects are more relevant for small objects. For example, the Heisenberg Uncertainty Principle states that the product in the uncertainties in position and momentum can't go below a certain limit. Ordinary-sized object have such a huge mass, and thus, such a huge momentum, that the Uncertainty Principle can safely be ignored.
A large truck typically has more inertia than a small car because inertia is directly proportional to an object's mass. The greater mass of the truck means it will resist changes in its state of motion more than the smaller car.
Yes, since momentum is the product of an object's mass and velocity, when mass remains constant, velocity becomes the main factor in determining momentum. For example, a bullet fired from a gun can have significant momentum due to its high velocity even though it has a relatively small mass.