to find the new focal length when the lens is put into water it becomes the 4 times the focal length in air.
The focal length of a telescope is directly related to the magnification in that the longer the focal length, the more magnification you get from the telsceope. How the focal length of a telescope relates to the length of the telescope itself depends on the design of the telescope. In a refracting telescope, the focal length is approximately the length of the telescope. In a reflecting telescope, the focal length is roughly two time the length of the telescope.
The magnifying power of a telescope is the focal length of the scope in millimeters, divided by the focal length of the eyepiece in millimeters. Focal length of scope: 225cm=2250mm Focal length of eyepiece: 7.5mm 2250/7.5= 300X
The magnification of the telescope image is(focal length of the objective) divided by (focal length of the eyepiece).The focal length of the objective is fixed.Decreasing the focal length of the eyepiece increases the magnification of the image.(But it also makes the image dimmer.)
The focal length of the telescope's mirror can be calculated using the formula: Telescope focal length = Eyepiece focal length × Magnification = 26 mm × 70x = 1820 mm Therefore, the focal length of the telescope's mirror would be 1820 mm.
Focaal length for plane mirror is 0
it is zero . Power = 1/focal length The focal length of a plane glass or mirror is infinite, therfore power is zero
to find the new focal length when the lens is put into water it becomes the 4 times the focal length in air.
The focal length of a convex lens is easier to find than a concave lens because for a convex lens, the focal length is positive and is measured from the lens to the focal point. In contrast, for a concave lens, the focal length is negative and the rays of light are diverged. This makes it more challenging to find the focal point accurately.
It does not. For an explanation of "focal plane" see the question What is the focal plane?
To find the focal length of a lens, you can use the lens formula: 1/f 1/do 1/di, where f is the focal length, do is the object distance, and di is the image distance. Measure the object and image distances from the lens, then plug the values into the formula to calculate the focal length.
Focus or focal length?
radius of curvature = 2Focal length
The back focal length in optical systems is important because it determines the distance between the rear focal point of a lens or mirror and the focal plane where an image is formed. This distance affects the magnification, field of view, and overall performance of the optical system.
The focal length of a lens can be calculated by measuring the distance between the lens and the image plane when an object far away is in focus. This distance is the focal length of the lens. Alternatively, the focal length can be found using the lens maker's formula: 1/f = (n-1) * (1/R1 - 1/R2), where f is the focal length, n is the refractive index of the lens material, and R1 and R2 are the radii of curvature of the two lens surfaces.
A plane mirror has the power of creating images that are virtual, upright, and the same size as the object being reflected. It does not alter the size or shape of the object, but simply reflects light rays.
The focal length of a concave mirror can be found by using the mirror formula, which is 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. By measuring the object and image distances from the mirror, you can calculate the focal length using this formula.