answersLogoWhite

0

AllQ&AStudy Guides
Best answer

The charge density inside a conductor is always zero

This answer is:
Related answers

The charge density inside a conductor is always zero

View page

In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unitlength, surface area, or volume, respectively. The respective SI units are C·m−1, C·m−2 or C·m−3.[1]

Like any density, charge density can depend on position, but because charge can be negative - so can the density. It should not be confused with the charge carrier density, the number of charge carriers (e.g. electrons, ions) in a material per unit volume, not including the actual charge on the carriers.

In chemistry, it can refer to the charge distribution over the volume of a particle; such as a molecule, atom or ion. Therefore, a lithium cation will carry a higher charge density than a sodium cation due to the lithium cation's having a smaller ionic radius, even though sodium has more electrons (11) than lithium (3).

View page

the density of the conductor

View page

Volumetric density is the density based upon the volume of an object.

View page

Every object consists of a certain amount of positive charge and a certain amount of negative charge. For neutral objects, the amount of each type of charge is equal in every tiny, or infinitesimal, portion of the object. If the object has the shape of a line, the amount of positive charge in each tiny segment of length along the line is equal to the amount of negative charge in each tiny segment of length. For a neutral three-dimensional object, such as a cube, the amount of negative charge in each small volume element of the total volume of the cube is equal to the amount of positive charge in each small volume element. All neutral objects have a charge density of zero throughout their volumes despite the fact that they have charge. The charge density describes the amount of excess charge per given region of space. For objects that are not neutral, then, the charge density is either positive or negative. A positive charge density expresses the fact that an object has a given amount of positive charge more than it has negative charge in a specific region of space. Likewise, a negative charge density means the object has a given amount of negative charge more than positive charge for a given region of space. For a line of charge, the charge density is expressed as Coulombs per meter when using SI units. For a two-dimensional object, such as a disk, the charge density using SI units is Coulombs per (meter^2). For objects that have uniform excess charge throughout their volume, the charge density is expressed as the total amount of excess charge on the body divided by the total length/ area/ volume of the body. For objects that have nonuniform charge excesses, the charge density must be expressed as a function of position (and possibly, time) within the object.

View page
Featured study guide

Biology

13 cards

What is the source of energy for photosynthesis

What degree Celsius does water reach maximum density

What do leaves absorb to make food

Which process takes place in the presence of oxygen and produces nearly twenty times as much ATP as glycolysis alone

➡️
See all cards
1.0
1 Review
More study guides
3.17
6 Reviews

No Reviews
Search results