answersLogoWhite

0

AllQ&AStudy Guides
Best answer

how does ahp use eigen values and eigen vectors

This answer is:
Related answers

how does ahp use eigen values and eigen vectors

View page

An eigenvector is a vector which, when transformed by a given matrix, is merely multiplied by a scalar constant; its direction isn't changed. An eigenvalue, in this context, is the factor by which the eigenvector is multiplied when transformed.

View page

I'm seeking the answer too.

What's the meaning of the principal eigenvector of an MI matrix?

View page

If a linear transformation acts on a vector and the result is only a change in the vector's magnitude, not direction, that vector is called an eigenvector of that particular linear transformation, and the magnitude that the vector is changed by is called an eigenvalue of that eigenvector.

Formulaically, this statement is expressed as Av=kv, where A is the linear transformation, vis the eigenvector, and k is the eigenvalue. Keep in mind that A is usually a matrix and k is a scalar multiple that must exist in the field of which is over the vector space in question.

View page

This is a complicated subject, which can't be explained in a few words. Read the Wikipedia article on "eigenvalue"; or better yet, read a book on linear algebra. Briefly, and quoting from the Wikipedia, "The eigenvectors of a square matrix are the non-zero vectors that, after being multiplied by the matrix, remain parallel to the original vector. For each eigenvector, the corresponding eigenvalue is the factor by which the eigenvector is scaled when multiplied by the matrix."

View page
Featured study guide
📓
See all Study Guides
✍️
Create a Study Guide
Search results