When a cell is placed in salt water it will shrink, but will swell in carbonated water. m.c
A solution whose concentration of solute is equal to the maximum concentration predicted from the solute's solubility is called a saturated solution. In a saturated solution, the solute is in equilibrium with its undissolved form, meaning no more solute can dissolve at that specific temperature and pressure.
If a plant cell is placed in a solution with a solute concentration that is twice as great as that of its cytoplasm, the cell will undergo plasmolysis. Water will move out of the cell to balance the solute concentrations, causing the cell to shrink and the plasma membrane to pull away from the cell wall. This can lead to wilting and, if prolonged, may damage the cell's internal structures.
Semi-molar refers to a solution that is halfway between being molar (having a concentration of 1 mole of solute per liter of solution) and being dilute. It typically refers to a solution where the concentration falls between 0.1 to 1 mole per liter.
Standard solutions are used in analytical chemistry to accurately determine the concentration of a substance in a sample through titration or calibration. These solutions have a known concentration and can be used to create a calibration curve or to compare with the sample's response, thus allowing for precise quantification of the analyte.
The pH is 6,15.
A solution whose concentration of solute is equal to the maximum concentration predicted from the solute's solubility is called a saturated solution. In a saturated solution, the solute is in equilibrium with its undissolved form, meaning no more solute can dissolve at that specific temperature and pressure.
If a plant cell is placed in a solution with a solute concentration that is twice as great as that of its cytoplasm, the cell will undergo plasmolysis. Water will move out of the cell to balance the solute concentrations, causing the cell to shrink and the plasma membrane to pull away from the cell wall. This can lead to wilting and, if prolonged, may damage the cell's internal structures.
primary standard solution is prepared by direct measurements of the mass of solute and the volume of solution.whereas, a secondary standard solution is a solution whose concentration can't be determined directly from weight of solute and volume of solution, the concentration must be determined by analysis of the solution itself.
From areas of higher concentration (of water) to lower concentration (of water) - ie it fills the space. That would mean that it would flow from a solution whose concentration of solute is higher to one where the solute concentration is lower.
This would represent a mild base (or basic) solution. Greater than 7.0 = basic. Less than 7.0 = acidic.
Semi-molar refers to a solution that is halfway between being molar (having a concentration of 1 mole of solute per liter of solution) and being dilute. It typically refers to a solution where the concentration falls between 0.1 to 1 mole per liter.
The term applied to an aqueous solution with a hydrogen ion concentration (H+) lower than the hydroxide ion concentration (OH-) is basic or alkaline. This indicates that there are more OH- ions present, making the solution basic on the pH scale.
The pH of a solution is a measure of its acidity or basicity. To calculate the pH from the hydroxide concentration, you would first need to convert the concentration to a pOH value using the equation pOH = -log[OH-]. Then, you can calculate the pH using the relationship pH + pOH = 14.
Standard solutions are used in analytical chemistry to accurately determine the concentration of a substance in a sample through titration or calibration. These solutions have a known concentration and can be used to create a calibration curve or to compare with the sample's response, thus allowing for precise quantification of the analyte.
The hydroxide ion concentration can be calculated using the formula [OH-] = 10^-(14-pH). Thus, for a solution with pH 12.40, the hydroxide ion concentration would be 10^-(14-12.40), which is equal to 2.51 x 10^-2 M.
The concentration of hydroxide ions (OH-) in a solution with a pH of 4.0 is 1 x 10^-10 mol/L. This value can be calculated using the relationship between pH and pOH (pOH = 14 - pH), and then using the formula for the concentration of hydroxide ions in water at a given pOH.
The pH is 6,15.