answersLogoWhite

0

an electromagnetic wave

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

What combination causes attraction and repulsive forces?

Electric and Magnetic Forces


How do you compare and contrast electric forces and magnetic forces?

Electric forces and magnetic forces are both fundamental forces in nature that act on charged particles. Electric forces are created by the presence of electric charges, either attracting opposite charges or repelling like charges. Magnetic forces, on the other hand, are created by moving electric charges or magnetic materials, attracting or repelling based on the orientation of the magnetic field. While both forces involve the interaction of charged particles, electric forces are static and act on stationary charges, while magnetic forces are dynamic and act on moving charges.


What are the two causes of electric and magnetic forces?

Electric forces are caused by the attraction or repulsion of electric charges, while magnetic forces are caused by the motion of electric charges.


How do electric and magnetic forces act different objects?

They push or pull when it touches.


What is the difference between the magnetic and electric field?

The main difference between magnetic and electric fields is that electric fields are created by electric charges, while magnetic fields are created by moving electric charges. Electric fields exert forces on other electric charges, while magnetic fields exert forces on moving electric charges.


What is the relationship between electric forces and magnetic forces in the context of electromagnetic interactions?

Electric forces and magnetic forces are interconnected in electromagnetic interactions. When an electric current flows through a wire, it creates a magnetic field around the wire. Similarly, a changing magnetic field can induce an electric current in a nearby wire. This relationship is described by Maxwell's equations and forms the basis of electromagnetism.


What is some examples of long range force?

Long range forces are forces that act over a long distance, like electric forces, magnetic forces, or gravity.Long range forces are forces that act over a long distance, like electric forces, magnetic forces, or gravity.Long range forces are forces that act over a long distance, like electric forces, magnetic forces, or gravity.Long range forces are forces that act over a long distance, like electric forces, magnetic forces, or gravity.


Is gravity and magnetic forces the same?

No, gravity and magnetic forces are not the same. Gravity is a force of attraction between objects with mass, while magnetic forces are due to the presence of moving electric charges. Gravity acts on all objects with mass, while magnetic forces act on objects with electric charge.


What is the difference between electromagnetic and magnetic fields?

Electromagnetic fields are a combination of electric and magnetic fields that oscillate and propagate through space, carrying energy. Magnetic fields, on the other hand, are produced by moving electric charges and exert forces on other moving charges. In summary, electromagnetic fields involve both electric and magnetic components, while magnetic fields are solely produced by moving electric charges.


What is the difference between electric and magnetic fields?

Electric fields are created by electric charges and exert forces on other charges, while magnetic fields are created by moving electric charges and exert forces on other moving charges. In summary, electric fields are produced by stationary charges, while magnetic fields are produced by moving charges.


How the behavior of electric charges similar to that of magnetic poles?

Like poles repel; opposite poles attract. They are similar to electric charges, for they can both attract and repel without touching. ... Electric charges produce electrical forces and regions called magnetic poles produce magnetic forces.


What foctors affect the strength of electric and magnetic forces?

The strength of electric forces is influenced by the charge of the objects involved and the distance between them (Coulomb's law). For magnetic forces, the strength is determined by the magnitude of the magnetic field, the charge of the moving particle, and the velocity of the particle (Lorentz force law).