answersLogoWhite

0

Absolute zero is the temperature at which particles have no kinetic energy. This is at -459° F/0 K/-273.15° C. (The Kelvin scale is defined to start at absolute zero.) It is impossible to actually achieve this, though scientists have gotten very clos

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

What is measure the average kinetic energy of particles?

The average kinetic energy of particles is temperature.


How is temperature related to the kinetic energy of particles?

Temperature is directly related to the kinetic energy of particles. As temperature increases, the particles move faster and have more kinetic energy. Conversely, as temperature decreases, the particles move slower and have less kinetic energy.


How is kinetic energy related to temperature?

Kinetic energy is related to temperature because temperature is a measure of the average kinetic energy of the particles in a substance. As the kinetic energy of particles increases, so does the temperature of the substance.


How does temperature affect the kinetic energy of particles?

Temperature directly affects the kinetic energy of particles. As temperature increases, the particles gain more energy and move faster, increasing their kinetic energy. Conversely, as temperature decreases, the particles lose energy and move slower, decreasing their kinetic energy.


Which is the average kinetic energy of a particles in an object?

The average kinetic energy of particles in an object is directly related to the temperature of the object. As temperature increases, the average kinetic energy of the particles also increases. This is because temperature is a measure of the average kinetic energy of the particles in an object.


How are temperature and kinetic energy related to each other?

Temperature is a measure of the average kinetic energy of the particles in a substance. As the temperature of a substance increases, the average kinetic energy of its particles also increases. Conversely, as the temperature decreases, the average kinetic energy of the particles decreases.


How does temperature effect kinetic energy?

Temperature is directly proportional to the average kinetic energy of a substance's particles. As temperature increases, the particles gain more energy, leading to an increase in their motion and kinetic energy. Conversely, as temperature decreases, the particles' motion and kinetic energy decrease.


Is temperature a measure of the kinetic energy of an object?

Yes. Temperature in Kelvins a measure of the average kinetic energy of the particles that make up the substance. The higher the temperature the greater the kinetic energy. The lower the temperature the lower the kinetic energy. At absolute zero there is no movement of particles, hence no kinetic energy.


Which two factors affect the kinetic energy of the particles?

Temperature and mass of the particles affect the kinetic energy of particles. As temperature increases, the particles move faster, increasing their kinetic energy. Similarly, particles with higher mass have greater kinetic energy compared to particles with lower mass at the same temperature.


What happens to an objects temperature if the kinetic energy of its particles decreases?

If the kinetic energy of an object's particles decreases, its temperature will decrease as well. Temperature is a measure of the average kinetic energy of the particles in a substance, so a decrease in kinetic energy means a decrease in temperature.


How is the temperature of an object related to the average kinetic energy of it's particles?

The temperature of an object is directly related to the average kinetic energy of its particles. As the temperature increases, the average kinetic energy of the particles also increases. This is because temperature is essentially a measure of the average kinetic energy of particles in an object.


How is tempetature related to kinetic energy?

Temperature is directly related to the average kinetic energy of the particles in a substance. As temperature increases, the average kinetic energy of the particles also increases. Conversely, when temperature decreases, the average kinetic energy of the particles decreases.