Oxidized
Before the Krebs cycle can proceed, pyruvate must be converted into acetyl-CoA through a process known as pyruvate decarboxylation. This reaction occurs in the mitochondria and is catalyzed by the enzyme pyruvate dehydrogenase complex. Acetyl-CoA then enters the Krebs cycle to be further metabolized for energy production.
The end product of glycolysis is pyruvate, which is converted into acetyl-CoA before entering the Krebs cycle. Acetyl-CoA combines with oxaloacetate to initiate the Krebs cycle, where it undergoes a series of reactions to produce ATP and high-energy electron carriers.
Fats and proteins are brought into the Krebs cycle by being converted. They can either be converted to glucose or acetyl which will go through Krebs cycle.
Pyruvate
The formation of acetyl-CoA
For every molecule of pyruvate entering the Krebs cycle, 3 molecules of CO2 are released. Since each glucose molecule produces 2 molecules of pyruvate through glycolysis, the total number of CO2 molecules released per glucose molecule in the Krebs cycle is 6.
Pyruvate is transported to the mitochondria to serve as a starting point for the Krebs cycle. Once in the mitochondria, pyruvate is converted into acetyl-CoA, which then enters the Krebs cycle to be oxidized for energy production.
Pyruvate -> Acetyl CoA -> Citrate which is used by the Krebs or Citric Acid Cycle.
pyruvate
In Glycolysis, the final compound formed is Pyruvate. Now, pyruvate has to be transformed to Acetyl-CoA by the substitution of the carboxylic group with a Coenzyme A by pyruvate dehydrogenase. In real terms, Acetyl-CoA is the molecule that "switch on" the Krebs cycle.
Galactose is converted to glucose-6-phosphate, which can enter glycolysis to produce pyruvate. Pyruvate can then be converted to acetyl-CoA, a molecule that enters the Krebs cycle. This allows galactose-derived metabolites to be utilized in the Krebs cycle for energy production.
The citric acid cycle, more commonly known as the Krebs cycle.