Concrete, lead
Miles of lead and concrete would be ultimate protection against gamma rays.
A few inches of lead
A very thick piece of metallic Lead(Pb)
Lead is commonly used to provide the best protection against gamma rays. Lead's high density and atomic number make it an effective material for absorbing and blocking gamma radiation. Thick barriers of lead are often used in medical facilities and nuclear power plants to shield workers from gamma rays.
Several feet of concrete or a few inches of lead
Materials with high atomic numbers, such as lead or concrete, are effective at shielding against gamma rays due to their ability to absorb and scatter the radiation. Thick layers of these materials are commonly used in the construction of shielding barriers to protect against gamma ray exposure. Lead is often preferred for its high density and effectiveness in blocking gamma rays.
several feet of concrete or a few inches of lead
Gamma rays can be difficult to fully block, as they are high-energy electromagnetic radiation; however, materials such as lead and concrete are effective at attenuating gamma rays. Thicker and denser materials provide better protection against gamma rays.
Several feet of concrete
A good thickness of lead.
no gamma rays are the best
The best protection against gamma rays is dense material such as lead or concrete, which can effectively absorb and reduce the penetration of gamma ray particles. Thick shielding made of these materials can help limit exposure to gamma rays and minimize potential harmful effects on humans or equipment. Additionally, maintaining a safe distance from gamma ray sources and using proper safety protocols can also provide effective protection.