1/36 of a second
you find out a waves speed by taking the wavelength and divide it by it's wave period or how long it takes for the wave to complete a full wavelength. This is what my textbook said. Speed=Wavelength ×Frequency
The diagram provided doesn't specify the time period of the wave, which is necessary to calculate the frequency (frequency = 1 / time period). In addition, the distance between wave peaks (wavelength) is also required as the speed of the wave can be calculated using the equation speed = frequency x wavelength. Without both the time period and wavelength, the frequency cannot be determined.
The frequency of a transverse wave is the number of complete oscillations it makes in a given time period. It is determined by the speed of the wave and the wavelength. The formula to calculate frequency is frequency speed of the wave / wavelength.
When you decrease the wave period, the wavelength becomes shorter and the frequency increases. This results in the wave moving faster.
The period of a sound wave is the time it takes for one complete wave cycle to pass a fixed point. To find the period, we can use the formula: Period = 1 / Frequency. If we know the speed of sound in air is approximately 343 m/s, we can calculate the frequency using the formula: Frequency = Speed / Wavelength. Consequently, the period will be: Period = 1 / Frequency.
The speed of a wave equals the frequency times the wavelength (speed = frequency x wavelength). Therefore, the wavelength would equal the speed divided by the frequency. Also, the speed of a wave in a vacuum is the speed of light, c, which is a constant.
Wavelength*Frequency = Velocity of the wave. or Wavelength/Period = Velocity of the wave.
For any wave:speed = wavelength x frequency So, you must simply calculate the frequency first (it is 1/period), then multiply that by the wavelength.
frequency = (wave speed)/(wavelength) frequency = 1/(period)
-- longest wavelength -- lowest frequency
Period and frequency are inverse to each other, as period increases frequency decreases. So, to answer this question as the period of the wave decreases its frequency must increase.
You solve this as follows: 1) Decide on a number for the speed of sound. Note that the speed of sound in air is quite different to the speed of sound in water, for example. Convert this speed to meters/second, if it isn't already in meters/second. 2) Divide the speed by the wavelength, to get the frequency. 3) The period is simply the reciprocal of the frequency.