answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: Calculate acceleration by torque and moment of inertia?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the equation of torqe?

The net torque is equal to moment of inertia times angular acceleration. (Στ=Ia)


What is inertia torque?

Inertia torque an imaginary torque, which when applied upon a rigid body, brings it in an equilibrium position. Its magnitude is equal to accelerating couple, but opposite in direction.T1 = -IαwhereI = mass moment of inertia of body andα = angular acceleration


What is the constant of proportionality between torque and angular acceleration?

The rotating object's moment of inertia. Similar to Newton's Second Law, commonly quoted as "force = mass x acceleration", there is an equivalent law for rotational movement: "torque = moment of inertia x angular acceleration". The moment of inertia depends on the rotating object's mass and its exact shape - you can even have a different moment of inertia for the same shape, if the axis of rotation is changed. If you use SI units, and radians for angles (and therefore radians/second2 for angular acceleration), no further constants of proportionality are required.


If a net torque is applied to an object that object will experience which of the following a constant angular speed angular acceleration or an increasing moment of inertia?

angular acceleration


Is angular acceleration proportional or inversely proportional to torque?

Proportional.For linear movement, Newton's Second Law states that force = mass x acceleration.The equivalent for rotational movement is: torque = (moment of inertia) x (angular acceleration).Proportional.For linear movement, Newton's Second Law states that force = mass x acceleration.The equivalent for rotational movement is: torque = (moment of inertia) x (angular acceleration).Proportional.For linear movement, Newton's Second Law states that force = mass x acceleration.The equivalent for rotational movement is: torque = (moment of inertia) x (angular acceleration).Proportional.For linear movement, Newton's Second Law states that force = mass x acceleration.The equivalent for rotational movement is: torque = (moment of inertia) x (angular acceleration).


How is force related to inertia?

Inertia can be measured in units of mass, that is, in kilograms. They are related via Newton's Second Law: force = mass x acceleration.


Does newtons law holds good for rotary motion?

Yes, if you apply it to every individual particle, or use integration.However, for practical calculations, it is often convenient to consider rotary motion separately. There is a rotational equivalent of Newton's Second Law (force = mass x acceleration), where you replace the force with a torque, the mass with the moment of inertia, and the acceleration with angular acceleration.The moment of inertia for objects of different forms are calculated through integration.Yes, if you apply it to every individual particle, or use integration.However, for practical calculations, it is often convenient to consider rotary motion separately. There is a rotational equivalent of Newton's Second Law (force = mass x acceleration), where you replace the force with a torque, the mass with the moment of inertia, and the acceleration with angular acceleration.The moment of inertia for objects of different forms are calculated through integration.Yes, if you apply it to every individual particle, or use integration.However, for practical calculations, it is often convenient to consider rotary motion separately. There is a rotational equivalent of Newton's Second Law (force = mass x acceleration), where you replace the force with a torque, the mass with the moment of inertia, and the acceleration with angular acceleration.The moment of inertia for objects of different forms are calculated through integration.Yes, if you apply it to every individual particle, or use integration.However, for practical calculations, it is often convenient to consider rotary motion separately. There is a rotational equivalent of Newton's Second Law (force = mass x acceleration), where you replace the force with a torque, the mass with the moment of inertia, and the acceleration with angular acceleration.The moment of inertia for objects of different forms are calculated through integration.


Can you find torque by time in moment of inertia?

Comparing linear and circular motion we can see that moment of inertia represents mass and torque represents force. So the product change in the circular momentum per unit time is torque. Circular momentum is the product of moment of inertia and circular velocity.


What one of the following does not have some dimensions?

Moment of inertia and torque


Mass moment of inertia of a flywheel?

define moment of inertia§ I is the moment of inertia of the mass about the center of rotation. The moment of inertia is the measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will spin after being applied a given force).


What is the use of moment of inertia?

moment of inertia is the rotational equivalent of mass. it is given by I= Mk2 moment of inertia in rotational motion play the same role as mass in linear motion, that is in linear motion f = ma while in rotation, torque= I*Angular acceleration where I is the moment of inertia


Inertia what does it mean?

Inertia is the inherent property of a body that makes it oppose any force that would cause a change in its motion. A body at rest and a body in motion both oppose forces that might cause acceleration. The inertia of a body can be measured by its mass, which governs its resistance to the action of a force, or by its moment of inertia about a specified axis, which measures its resistance to the action of a torque about the same axis.