Well, that's actually the way that electric motors operate,
and I think you'll agree that they do plenty of work.
To give a charge in an electric field potential energy in terms of work, force, and distance, you would calculate the work done by the electric force on the charge as it moves through the field. This work done against the electric force is equal to the increase in the charge's electric potential energy. The work done (W) is given by the equation W = Fd, where F is the electric force and d is the distance the charge moves.
Yes. Work is force times distance, or technically the dot product of vector force times vector distance. Electric fields exert force on charge and the force does work when the charge moves in the direction of the electric force. (In the converse, when the movement of charge is against the direction of force, work is transformed into stored electromagnetic energy.) Technically, it is the electric field that does work and not the field line. Mother nature produces electric fields, but humans can not see electric fields. Humans invented the idea of field lines to create a mental picture of the field. The two most common ways are to draw lines in space or to draw a collection of arrows in space. Note: One should not confuse this answer with the question of whether work can be done by a magnetic field. A magnetic field can not do work because the direction of the magnetic force is always perpendicular to the direction of motion of charge and hence the dot product of force and distance moved is always zero.
Yes. That's how generators work.
Yes, the electric force is a conservative force.
An electric force is the force on an electric charge or an electrically charged object when immersed in an electric field.
With an electric motor. A force acts on an electric current when it runs through a magnetic field (called the Lorentz Force) see: http://en.wikipedia.org/wiki/Electric_motor
it uses electric force
The symbol for electric force is ( F_e ).
When a charge is moved in the direction of an electric field, no work is done because the force acting on the charge and the displacement are in the same direction. This means that the angle between the force and the displacement is zero, and therefore no work is required to move the charge. This is because the electric field itself is responsible for producing the force that moves the charge.
Electric force depends on the charge of the objects involved, analogous to mass in gravitational force. The greater the charge of the objects, the stronger the electric force between them.
The electric force, the magnetic force and gravity, all act at a distance.The electric force, the magnetic force and gravity, all act at a distance.The electric force, the magnetic force and gravity, all act at a distance.The electric force, the magnetic force and gravity, all act at a distance.
Coulomb attraction/repulsion is an electrical force.