Yes. The potential energy E= -mGM/r is transferred to mass m as mv2.
The orbit rate squared w2 = GM/r3.
Gravitational potential energy can be transferred between objects when one object loses gravitational potential energy while another gains it. This transfer of energy typically occurs as objects move in a gravitational field, such as when an object falls from a height to the ground. The total amount of gravitational potential energy in the system remains constant, but it can be transferred between objects within the system.
Two factors that affect the gravitational attraction between objects are the mass of the objects and the distance between them. The greater the mass of the objects, the stronger the gravitational attraction, while increasing the distance between the objects weakens the gravitational force.
The gravitational force between objects can be caused by their mass and the distance between them. The greater the mass of the objects and the shorter the distance between them, the stronger the gravitational force will be.
The two factors that affect the gravitational force between two objects are the mass of the objects and the distance between them. The greater the mass of the objects, the stronger the gravitational force, and the closer the objects are, the stronger the gravitational force.
If the distance between two objects is doubled, the gravitational force between them decreases by a factor of 4. This is because the gravitational force is inversely proportional to the square of the distance between the objects.
Gravitational force between two objects can be reduced by increasing the distance between them. This can be achieved by moving the objects farther apart from each other. The gravitational force decreases with the square of the distance between the objects.
The gravitational force between two objects is directly proportional to the product of their masses. This means that the greater the mass of the objects, the stronger the gravitational force between them. In other words, increasing the mass of one or both objects will result in a larger gravitational force between them.
If the objects are the same distance apart (center to center), then the gravitational force between two less massive objects will be less than the gravitational force between two more massive objects.
The two factors that influence the gravitational pull between two objects are the mass of the objects and the distance between them. The greater the mass of the objects, the stronger the gravitational pull, while the farther apart the objects are, the weaker the gravitational pull.
distance between them. The greater the mass of the objects and the closer they are, the stronger the gravitational attraction between them.
The two factors that affect the gravitational force acting between two objects are the mass of the objects and the distance between them. Gravitational force increases with the mass of the objects and decreases with the distance between them squared, according to Newton's law of universal gravitation.
Two factors that affect the gravitational force between two objects are the mass of the objects and the distance between them. The greater the mass of the objects, the stronger the gravitational force, and the closer the objects are to each other, the stronger the gravitational force.