yes you can re new it but you need to scrape half the top of the card of then put it in the machine so it gets re printed make sure you still have your bottom half, half way from the rank up.....
5ex+2?d/dx(u+v)=du/dx+dv/dxd/dx(5ex+2)=d/dx(5ex)+d/dx(2)-The derivative of 5ex is:d/dx(cu)=c*du/dx where c is a constant.d/dx(5ex)=5*d/dx(ex)-The derivative of 2 is 0 because it is a constant.d/dx(5ex+2)=(5*d/dx(ex))+(0)d/dx(5ex+2)=5*d/dx(ex)-The derivative of ex is:d/dx(eu)=eu*d/dx(u)d/dx(ex)=ex*d/dx(x)d/dx(5ex+2)=5*(ex*d/dx(x))-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(5ex+2)=5*(ex*1)d/dx(5ex+2)=5*(ex)d/dx(5ex+2)=5ex5ex+2?d/dx(cu)=c*du/dx where c is a constant.d/dx(5ex+2)=5*d/dx(ex+2)-The derivative of ex+2 is:d/dx(eu)=eu*d/dx(u)d/dx(ex+2)=ex+2*d/dx(x+2)d/dx(5ex+2)=5*(ex+2*d/dx(x+2))-The derivative of x+2 is:d/dx(u+v)=du/dx+dv/dxd/dx(x+2)=d/dx(x)+d/dx(2)d/dx(5ex+2)=5*[ex+2*(d/dx(x)+d/dx(2))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1-The derivative of 2 is 0 because it is a constant.d/dx(5ex+2)=5*[ex+2*(1+0)]d/dx(5ex+2)=5*[ex+2*(1)]d/dx(5ex+2)=5*[ex+2]d/dx(5ex+2)=5ex+2
The definition of the derivative, at a point X = x is the limit, as dx tends to 0, of [f(x+dx)-f(x)]/dx. In this case, therefore, it is lim[3*(x+dx)+2 - (3*x+2)]/dx = lim[3x + 3*dx +2 - 3x - 2]/dx = lim[3*dx/dx] = lim[3] = 3.
√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]
k*tan[√(4x)]=k*tan[(4x)1/2], where k is a constant:Multiplying by a constant, multiply the derivative of u by the constant c: d/dx d/dx(cu)=c*du/dxd/dx(k*tan[(4x)1/2])=k*d/dx(tan[(4x)1/2])-The derivative of tan[(4x)1/2] is:d/dx(tan u)=sec2(u)*d/dx(u)d/dx(tan[(4x)1/2])=sec2([(4x)1/2])*d/dx([(4x)1/2])d/dx(tan[(4x)1/2])=sec2(2√x)*d/dx([(4x)1/2])d/dx(k*tan[(4x)1/2])=k*{sec2(2√x)*d/dx([(4x)1/2])}-The derivative of (4x)1/2 is:Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(4x)1/2=(1/2)*(4x)1/2-1*d/dx(4x)d/dx(4x)1/2=(1/2)*(4x)-1/2*4d/dx(4x)1/2=4/[2(4x)1/2]d/dx(4x)1/2=4/[2(2√x)]d/dx(4x)1/2=4/[4√x]d/dx(4x)1/2=1/(√x)d/dx(k*tan[(4x)1/2])=k*sec2(2√x)*(1/√x)d/dx(k*tan[(4x)1/2])=[k*sec2(2√x)]/√x
25x?d/dx(au)=au*ln(a)*d/dx(u)d/dx(25x)=25x*ln(2)*d/dx(5x)-The derivative of 5x is:d/dx(cu)=c*du/dx where c is a constantd/dx(5x)=5*d/dx(x)d/dx(25x)=95x*ln(2)*(5*d/dx(x))-The derivative of x is:d/dx(x)=1x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(25x)=25x*ln(2)*(5*1)d/dx(25x)=25x*ln(2)*(5)-25x can simplify to (25)x, which equals 32x.d/dx(95x)=32x*ln(2)*(5)
d/dx(x + 2) = d/dx(x) + d/dx(2) = 1 + 0 = 1
Integrate by parts: ∫ uv dx = u ∫ v dx - ∫ (u' ∫ v dx) dx Let u = -2x Let v = cos 3x → u' = d/dx -2x = -2 → ∫ -2x cos 3x dx = -2x ∫ cos 3x dx - ∫ (-2 ∫ cos 3x dx) dx = -2x/3 sin 3x - ∫ -2/3 sin 3x dx = -2x/3 sin 3x - 2/9 cos 3x + c
5
For ∫ sin(√x) dx let y = √x = x1/2 → dy = 1/2 x-1/2 dx → 2x1/2 dy = dx → 2y dy = dx → ∫ sin(x1/2) dx = ∫(sin y) 2y dy Now: ∫ uv dx = u∫v dx - ∫(u'∫v dx) dx → ∫(sin y) 2y dy = ∫2y sin y dy = 2y ∫sin y dy - ∫(2 ∫sin y dy) dy = -2y cos y + 2 sin y + C = 2 sin y - 2y cos y + C → ∫ sin(√x) dx = 2 sin(√x) - 2(√x) cos(√x) + C
∫[√(4x) / x] dx = ∫(2 / √x)dx = 2∫(x-1/2) dx = 2(2x1/2 + C) = 4√x + C
This browser is pathetic for mathematical answers but here's the best that I can do:Let u = 23x therefore du/dx = 23let dv/dx = e^(2x) therefore v = 1/2*e^(2x)then, integrating by parts,I = I(u*dv/dx) dx = u*v - I(du/dx*v) dx= 23x*(1/2)*e^(2x) - I(23*(1/2)*e^(2x) dx= 23/2*xe^(2x) - 23/2*I(e^(2x)) dx= 23/2*xe^(2x) - 23/2*(1/2)*e^(2x)= 23/2*xe^(2x) - 23/4*e^(2x)or 23/4*e^(2x)*(2x - 1)
You have : y = e^(5x)^2 and de^u/dx = [ e^u ] [ du/dx ]dy/dx = [ e^(5x)^2 ] [ 10x ]