Phenolphthlalein is something like a pH indicator. When it is added to a liquid and the liquid turns pink, it means that the latter substance is basic.
When the solution is added with NaOH, it will turn pink.
Note that NaOH serves as a carbon dioxide neutralizer.
The color of the solution will slowly fade after some time, because carbon dioxide is present in the air neutralizing the color effect of the NaOH.
NaOH turns pink when phenolphthalein is added.
Phenolphthalein reacts with NaOH in a neutralization reaction, where the acidic H+ ions in phenolphthalein are replaced by the basic OH- ions from NaOH. This reaction leads to the formation of a pink color indicating the basic nature of the solution.
Phenolphthalein is a suitable indicator for NaOH because it changes color sharply from colorless to pink at the pH range of 8.2 to 10.0, which corresponds well to the endpoint of the titration of NaOH with an acid. This sharp color change allows for accurate and precise detection of the equivalence point in the titration process.
Due to the increase of the pressure found within the flame of the bunsen burner, the pressure creates a vacuum thus sucking the phenollphthalein up and turning the solution to the color of the akaline solution.
Phenolphthalein is commonly used as an indicator in the titration of hydrochloric acid (HCl) with sodium hydroxide (NaOH). Phenolphthalein changes color from colorless to pink at the endpoint of the titration when all the acid has been neutralized by the base.
NaOH turns pink when phenolphthalein is added.
Phenolphthalein reacts with NaOH in a neutralization reaction, where the acidic H+ ions in phenolphthalein are replaced by the basic OH- ions from NaOH. This reaction leads to the formation of a pink color indicating the basic nature of the solution.
Phenolphthalein is a suitable indicator for NaOH because it changes color sharply from colorless to pink at the pH range of 8.2 to 10.0, which corresponds well to the endpoint of the titration of NaOH with an acid. This sharp color change allows for accurate and precise detection of the equivalence point in the titration process.
Due to the increase of the pressure found within the flame of the bunsen burner, the pressure creates a vacuum thus sucking the phenollphthalein up and turning the solution to the color of the akaline solution.
Phenolphthalein is commonly used as an indicator in the titration of hydrochloric acid (HCl) with sodium hydroxide (NaOH). Phenolphthalein changes color from colorless to pink at the endpoint of the titration when all the acid has been neutralized by the base.
Yes, you can use indicators such as bromothymol blue or methyl orange in the titration of NaOH. These indicators change color at different pH ranges and can be used based on the specific pH endpoint needed for the titration.
This is so since the pH at the end point of Phenolphthalein is 9.1 and methyl orange is 3.7. For a strong acid strong base titration which the end point is between 3-11 phenolphthalein is used
The equation for the reaction between sodium hydroxide (NaOH) and hydrochloric acid (HCl) using phenolphthalein indicator is: NaOH + HCl → NaCl + H2O Phenolphthalein is a pH indicator that turns pink in basic solutions and colorless in acidic solutions.
Phenolphthalein is commonly used as an indicator in the titration of NaOH and H2SO4. It changes color from colorless to pink as the solution reaches a specific pH range, signaling the endpoint of the titration.
In the titration of sulfuric acid with sodium hydroxide (NaOH), a pH indicator suitable for a strong acid-strong base titration, such as phenolphthalein, can be used. Phenolphthalein changes color at around pH 8.2-10, which is suitable for detecting the endpoint of the neutralization reaction between sulfuric acid and sodium hydroxide.
Phenolphthalein is a suitable indicator for the titration of oxalic acid with sodium hydroxide. It changes color from colorless to pink at the endpoint of the titration when the acid has been completely neutralized.
Phenolphthalein is normally used for this reaction as it accurately displays the end point of the reaction, turning colorless as soon as it reaches the end point of the reaction. If carrying out this reaction, be careful, as the change is usually quite sudden. The color exhibited should be pink (or "fuchsia") at the beginning of the reaction. As it progresses, it should become lighter in color, until it becomes colorless suddenly.