Phenolphthalein, because NaOH is a strong base.
Phenolphthalein is used as an indicator in the titration of oxalic acid against sodium hydroxide because it undergoes a color change at the pH region where the reaction between oxalic acid and sodium hydroxide is neutralized. Oxalic acid is a diprotic acid, meaning it requires two equivalents of sodium hydroxide to be fully neutralized. Phenolphthalein changes color at a pH of around 8.2-10, which is ideal for indicating the endpoint of the titration.
Potassium permanganate is used as a self-indicator in the titration of oxalic acid because the initial pink color of potassium permanganate is decolorized in the presence of oxalic acid due to its reducing properties. The endpoint of the titration is reached when all the oxalic acid has reacted with the potassium permanganate, causing the pink color to persist. This change in color helps in determining the equivalence point of the titration.
Both HCl and oxalic acid are acids. Therefore, since there is no alkali present, these compounds do not undergo neutralization. So there is no suitable indicators for the addition of these two reagents.
In the titration of NaOH and C2H2O4 using phenolphthalein, the colour change will occur at the endpoint when the solution transitions from pink to colourless. Phenolphthalein is pink in basic solutions and colourless in acidic solutions, so once all the oxalic acid is neutralized by the sodium hydroxide, the solution will turn colourless.
Oxalic acid is acidified before titration to provide a medium that favors the reaction of the analyte with the titrant while minimizing interference from other substances. Acidification ensures that the oxalic acid dissociates fully to its acidic form, allowing for a more accurate and precise titration.
Phenolphthalein is used as an indicator in the titration of oxalic acid against sodium hydroxide because it undergoes a color change at the pH region where the reaction between oxalic acid and sodium hydroxide is neutralized. Oxalic acid is a diprotic acid, meaning it requires two equivalents of sodium hydroxide to be fully neutralized. Phenolphthalein changes color at a pH of around 8.2-10, which is ideal for indicating the endpoint of the titration.
Potassium permanganate is used as a self-indicator in the titration of oxalic acid because the initial pink color of potassium permanganate is decolorized in the presence of oxalic acid due to its reducing properties. The endpoint of the titration is reached when all the oxalic acid has reacted with the potassium permanganate, causing the pink color to persist. This change in color helps in determining the equivalence point of the titration.
Both HCl and oxalic acid are acids. Therefore, since there is no alkali present, these compounds do not undergo neutralization. So there is no suitable indicators for the addition of these two reagents.
To determine the pKa of oxalic acid, you can perform a titration experiment. By titrating a solution of oxalic acid with a strong base such as sodium hydroxide (NaOH) and monitoring the pH changes, you can identify the point where the acid is half-neutralized and calculate the pKa value. This is typically done using a pH meter or pH indicator to track the changes in acidity as the titration progresses.
This titration is based on the neutralization reaction between oxalic acid and sulfuric acid; a pH indicator is used.
In the titration of NaOH and C2H2O4 using phenolphthalein, the colour change will occur at the endpoint when the solution transitions from pink to colourless. Phenolphthalein is pink in basic solutions and colourless in acidic solutions, so once all the oxalic acid is neutralized by the sodium hydroxide, the solution will turn colourless.
In the titration of oxalic acid with NaOH, the acid-base reaction involves the neutralization of the acid by the base. However, in the titration of oxalic acid with potassium permanganate, the permanganate ion oxidizes the oxalic acid to carbon dioxide. This difference in reaction mechanisms leads to different equivalence points and color changes in the two titrations.
Oxalic acid is acidified before titration to provide a medium that favors the reaction of the analyte with the titrant while minimizing interference from other substances. Acidification ensures that the oxalic acid dissociates fully to its acidic form, allowing for a more accurate and precise titration.
Heating oxalic acid before titration with KMnO4 helps to remove any water of crystallization, making the compound anhydrous. This ensures accurate measurement of the substance being titrated and helps to prevent interference from water during the titration process. Additionally, heating can help to dissolve the oxalic acid more effectively, ensuring a more efficient reaction during titration.
Dilute sulfuric acid is used in the titration of potassium permanganate with oxalic acid because it helps to maintain a stable pH and prevents the oxidation of oxalic acid by permanganate ions. This ensures accurate results by minimizing side reactions and interference.
The equation for the reaction between hydrated oxalic acid (H2C2O4·2H2O) and sodium hydroxide (NaOH) is: H2C2O4·2H2O + 2NaOH → Na2C2O4 + 4H2O
Oxalic acid is added before titration of vitamin C to ensure that any trace amounts of transition metal ions are complexed. These metal ions can interfere with the titration process, leading to inaccurate results. Oxalic acid helps to prevent this interference by forming complexes with the metal ions, allowing for a more accurate determination of the vitamin C content.