i dont know really......cos u have to be specific what volume is it in how many moles room temperature pressure precautions etc
The concentration of hydrogen ions in a 0.1M solution of H2SO4 is 0.2M.
Sulfuric acid (H2SO4) is commonly used in titrations because it is a strong acid with a well-defined equivalence point. It can react with a wide range of bases, making it versatile for different types of titrations. Additionally, sulfuric acid is stable, inexpensive, and readily available in the laboratory.
To find the concentration of H2SO4, first calculate the number of moles of NaOH using the formula: moles = concentration x volume (in dm^3). Then, use the balanced equation to determine the mole ratio between NaOH and H2SO4. Finally, calculate the concentration of H2SO4 by dividing the moles of H2SO4 by the volume of H2SO4 used.
If water is present in the volumetric flask when transferring the H2SO4 solution from the pipette, the final concentration of H2SO4 will be diluted. This is because the water will mix with the H2SO4 solution, increasing the total volume in the flask without adding more H2SO4 molecules. As a result, the concentration of H2SO4 will be lower than intended.
To standardize 1N H2SO4 with KHP, you would first prepare a solution of KHP of known concentration. Then, titrate the KHP solution with the 1N H2SO4 solution until the endpoint is reached. The volume of H2SO4 used in the titration can then be used to calculate the exact concentration of the H2SO4 solution.
The concentration of hydrogen ions in a 0.1M solution of H2SO4 is 0.2M.
Sulfuric acid (H2SO4) is commonly used in titrations because it is a strong acid with a well-defined equivalence point. It can react with a wide range of bases, making it versatile for different types of titrations. Additionally, sulfuric acid is stable, inexpensive, and readily available in the laboratory.
To find the concentration of H2SO4, first calculate the number of moles of NaOH using the formula: moles = concentration x volume (in dm^3). Then, use the balanced equation to determine the mole ratio between NaOH and H2SO4. Finally, calculate the concentration of H2SO4 by dividing the moles of H2SO4 by the volume of H2SO4 used.
If water is present in the volumetric flask when transferring the H2SO4 solution from the pipette, the final concentration of H2SO4 will be diluted. This is because the water will mix with the H2SO4 solution, increasing the total volume in the flask without adding more H2SO4 molecules. As a result, the concentration of H2SO4 will be lower than intended.
To standardize 1N H2SO4 with KHP, you would first prepare a solution of KHP of known concentration. Then, titrate the KHP solution with the 1N H2SO4 solution until the endpoint is reached. The volume of H2SO4 used in the titration can then be used to calculate the exact concentration of the H2SO4 solution.
It depends on the specific requirements of the titration. HCl is a strong acid and may be preferred for titrations where a strong acid is needed, while H2SO4 is a diprotic acid that may be used for more complex reactions requiring two acidic protons. The choice between the two will depend on the specific characteristics of the reaction being studied.
0.984 M
Conductometric titrations measure the change in electrical conductivity during a titration, while volumetric titrations measure the volume of titrant needed to reach the equivalence point. Conductometric titrations are more sensitive to small changes in concentration, while volumetric titrations are more straightforward to perform and interpret.
The balanced chemical equation for the reaction is H2SO4 + 2NaOH -> Na2SO4 + 2H2O. From the mole ratio, 1 mole of H2SO4 reacts with 2 moles of NaOH. Using the volume and concentration of NaOH, we can calculate the moles of NaOH used. Then, knowing the moles of NaOH used and the volume of H2SO4, we can find the concentration of sulfuric acid.
Titration is the process of determining the concentration of a substance of a given solution using a known reagent. So types of titrations are neutralization titrations, red-ox titrations, gravimetric titrations and colorimetric titrations. According to the reagents available, the best type of titration should be determined.
To prepare 0.02N H2SO4 from 0.1N H2SO4, you can dilute the 0.1N H2SO4 by adding a calculated amount of water. To calculate the dilution factor, you can use the formula: C1V1 = C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration (0.02N), and you can solve for V2 to find the volume of the 0.1N H2SO4 to be diluted with water to get 0.02N H2SO4.
H2SO4 is preferred over HCl in redox titrations because HCl can release Cl2 gas during the reaction, which can interfere with the titration results. H2SO4 provides the necessary acidic conditions for the redox reaction without introducing additional complications.