answersLogoWhite

0


Top Answer
User Avatar
Wiki User
Answered 2010-01-10 14:26:05

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

See related link. By doing a search on the internet, you can find more examples.

001
๐Ÿ™
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
๐Ÿ˜‚
0
User Avatar

Your Answer

Loading...

Still have questions?

Related Questions

What is the values of the skewdness and kurtosis coefficient for the normal distribution 0 and 3 respectively?

No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.


What is affected by extreme outliers?

The mean, variance, skewness, kurtosis and all higher moments of a distribution.


What is the between skewness and kurtosis?

While skewness is the measure of symmetry, or if one would like to be more precise, the lack of symmetry, kurtosis is a measure of data that is either peaked or flat relative to a normal distribution of a data set. * Skewness: A distribution is symmetric if both the left and right sides are the same relative to the center point. * Kurtosis: A data set that tends to have a distant peak near the mean value, have heavy tails, or decline rapidly is a measure of high kurtosis. Data sets with low Kurtosis would obviously be opposite with a flat mean at the top, and a distribution that is uniform.


What are the formulas in probability?

There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.


What does kurtosis serve?

In probability theory and statistics, kurtosis (from the Greek word κυρτός, kyrtos or kurtos, meaning bulging) is a measure of the "peakedness" of the probability distribution of a real-valued random variable. Higher kurtosis means more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly sized deviations. Sometimes kurtosis gets confused with skewness, so I have added links to both these terms.


How do you perform data analysis?

We draw a sample from a population,plot it in a graph to understand its nature(central tendency, skewness and kurtosis),also calculate statistical measuers.Then predict a regression equation based on its nature or fit a probability distribution as the need arises.


The use of Pearson Coefficient of Skewness?

the use of the pearson's of skewness


If coefficient of skewness equals 0 then what would you say about the skewness of the distribution?

if coefficient of skewness is zero then distribution is symmetric or zero skewed.


What is the difference between Dispersion and Skewness?

distinguish between dispersion and skewness


Which value is NOT always a number in the data set it represents?

The range, median, mean, variance, standard deviation, absolute deviation, skewness, kurtosis, percentiles, quartiles, inter-quartile range - take your pick. It would have been simpler to ask which value IS in the data set!


What does a negative kurtosis mean?

It means distribution is flater then [than] a normal distribution and if kurtosis is positive[,] then it means that distribution is sharper then [than] a normal distribution. Normal (bell shape) distribution has zero kurtosis.


How do you compute discrete variables?

You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.


Notes about Bowel's coefficient of skewness and Kelly's coefficient of skewness?

describe the properties of the standard deviation.


What is Pearson's first rule of the measure of coefficient of skewness?

skewness=(mean-mode)/standard deviation


When the data are skewed to the right the measure of Skewness will be?

When the data are skewed to the right the measure of skewness will be positive.


The Pearson's coefficient of skewness is a measure of distribution's symmetry?

Pearson's coefficient of skewness is a measure of a distribution's symmetry.


How do you compute Skewness and Kurtosis of Histogram of a cumulative frequency function?

Plotted on arithmetic scale if phi intervals are used or semi-log paper if millimeters are used. More difficult than histogram or frequency curve to interpret at a glance. Independent of sieve interval. Grain-size parameters can be computed from this curve.


Can skewness be negative?

Yes.


How do you calculate skewness?

Skewness is measured as the third standardised moment of the random variable. Skewness is the expected value of {[X - E(X)]/sd(X)}3 where sd(X) = sqrt(Variance of X)


What does the term kurtosis mean?

The Greek word "kurtosis", when translated to English, means the probability theory of any measure of the "peakedness" of a real valued random variable.


What is skewness?

Skewness is deviation from normality. The larger a set of data is skewed, the larger it differs from a bell-shaped normal distribution.


What are some math words for the letter K?

kurtosis


What are the three types kurtosis?

mesokurtic leptokurtic platykurtic


Is kurtosis equal to zero?

It can be negative, zero or positive.


What is the definition for skew in math terms?

The skewness of a random variable X is the third standardised moment of the distribution. If the mean of the distribution is m and the standard deviation is s, then the skewness, g1 = E[{(X - m)/s}3] where E is the expected value. Skewness is a measure of the degree to which data tend to be on one side of the mean or the other. A skewness of zero indicates symmetry. Positive skewness indicates there are more values that are below the mean but the the ones that are above the mean, although fewer, are substantially bigger. Negative skewness is defined analogously.