answersLogoWhite

0


Best Answer

The potential energy of any object is measured using the equation U = mass * gravity * height to the object. Thusly:

U = m*G*h

U = 17.8 kg * 9.81 m/s2 * 854 m

U = 149 123.8 kg m2/s2 or Joules

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Determine the potential energy of an object resting at 854 meters and has a mass of 17.8 kg?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is the potential energy of an object that has a mass of 40 kg at a height of 17 meters?

The object's potential energy is 6,664 joules.


If you have a 2kg pendulum bob that is 6 meters above the ground at its high point and 1 meter at its low point how can you figure the kinetic energy?

Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.


What is the equation for caculating an object's potential energy?

That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.


What is the mass of a man who has a gravitational potential energy of U equals 5111 J at a height of h equals 4.72 m above the ground?

For this and similar questions, use the formula PE = mgh (potential energy = mass x gravity x height). If mass is in kilograms, gravity is 9.8 meters/sec2, and height is in meters, then the energy is in Joule.


What is the potential energy of a 20 kg safe on a shelf 0.5 meters above the ground?

Use the formula for gravitional potential energy: PE = mgh (mass x gravity x height). Use 9.8 for gravity. Answer will be in Joule.

Related questions

The potential energy of a 50 newton object resting on the edge of a cliff 30 meters high is?

The word in your question that I keyed on is "resting". An object at rest has zero kinetic energy. If you meant potential energy, the answer is 1500 joules.


The potential energy of a 50 newton object resting on the edge of a cliff 30 meters high is .?

1500 joules


Can an object have energy when it is at rest?

Sure. When a 6-kg bowling ball is resting on a shelf that's 2 meters off the floor, it has 12 joules of gravitational potential energy referenced to the floor.


How to Determine elastic potential energy?

The potential energy is the product of the force required to compress or stretch the elastic medium, and the distance of travel. If the force is measured in Newtons and the movement in meters, the work done will be in Joules.


A 5kg object is being lifted to a height of 8 meters and is dropped what is the kinetic energy of the object at 2 m?

After falling 6 meters, potential energy corresponding to those 6 meters will be converted to kinetic energy. The potential energy (for the 6 meters) is mgh = (5 kg)(9.82 m/s2)(6 m) = 294.6 J, so that is also the kinetic energy, since potential energy has been converted to kinetic energy.After falling 6 meters, potential energy corresponding to those 6 meters will be converted to kinetic energy. The potential energy (for the 6 meters) is mgh = (5 kg)(9.82 m/s2)(6 m) = 294.6 J, so that is also the kinetic energy, since potential energy has been converted to kinetic energy.After falling 6 meters, potential energy corresponding to those 6 meters will be converted to kinetic energy. The potential energy (for the 6 meters) is mgh = (5 kg)(9.82 m/s2)(6 m) = 294.6 J, so that is also the kinetic energy, since potential energy has been converted to kinetic energy.After falling 6 meters, potential energy corresponding to those 6 meters will be converted to kinetic energy. The potential energy (for the 6 meters) is mgh = (5 kg)(9.82 m/s2)(6 m) = 294.6 J, so that is also the kinetic energy, since potential energy has been converted to kinetic energy.


What is the formula used to determine the gravitational potenital energy of an object?

PE = mgh Potential energy = mass x gravity x height In SI units: Joules = kilograms x meters/second2 x meters Standard Earth gravity is about 9.8 meters/second2.


What is the potential energy of an object that has a mass of 40 kg at a height of 17 meters?

The object's potential energy is 6,664 joules.


What is the potential energy of a 500g ball held at a height of 0.800m?

The ball's potential energy at 0.8 meters is 3.92 joules.


If you have a 2kg pendulum bob that is 6 meters above the ground at its high point and 1 meter at its low point how can you figure the kinetic energy?

Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.Calculate the potential energy at its highest point. Don't use the 6 meters above the ground - use the 5 meter difference from the lowest point. This part of the potential energy gets converted into kinetic energy, when the pendulum is at its lowest point. Just assume that all the potential energy (for the 5 meters difference) get converted into kinetic energy.


How much potential energy does 60 kg skater have at 12 meters above ground?

The skater has potential energy of 7,056 joules.


What is the Potential energy of an object that has 20 kgand at rest 5 m?

20 kilograms and 5 meters? Potential energy = mass * gravitational acceleration * height PE = (20 kilograms )(9.80 m/s2)(5 meters) = 980 Joules of potential energy -----------------------------------------


What is the equation for caculating an object's potential energy?

That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.That depends what kind of "potential energy" you are talking about, but without further specification, this usually refers to gravitational potential energy. The formula for gravitational potential energy is PE = mgh, that is, mass x gravity x height. If mass is in kg. and gravity in meters per second square (use the value 9.82 for Earth's gravity), and height in meters, then the energy will be in Joule.