answersLogoWhite

0

Newtonian, or classical physics applies to physical, every day things, while quantum physics is a type of theoretical physics that does not apply to any physical things.

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

What is the correspondence principle as first articulated by Bohr?

The correspondence principle, articulated by Bohr in 1923, states that the behavior of quantum systems must reflect classical physics in the limit of large quantum numbers. This principle reconciles the differences between classical and quantum mechanics by showing that classical physics is a limiting case of quantum mechanics. It asserts that the predictions of quantum mechanics converge to classical physics predictions as the quantum numbers become large.


What is the significance of the Bell inequality in quantum mechanics and how does it challenge classical physics theories?

The Bell inequality in quantum mechanics is significant because it demonstrates that certain correlations between particles cannot be explained by classical physics theories. This challenges the idea that particles have predetermined properties and suggests that quantum mechanics operates differently from classical physics.


Why classical physics changes from classical to quantum?

Classical physics fails to accurately describe phenomena at the quantum scale, like particles behaving as waves and existing in superpositions. Quantum mechanics, with principles like wave-particle duality and quantization of energy levels, provides a more comprehensive framework to explain such phenomena. Thus, the transition from classical to quantum physics occurs due to the limitations of classical physics in describing the behavior of particles at the quantum level.


What are the two major of physical?

classical physics and (Quantum or modern) Physics


2 divisions of physics?

Classical (or Newtonian) and Quantum.


What is the significance of the classical turning point in the context of quantum mechanics?

In quantum mechanics, the classical turning point is a critical point where a particle's behavior transitions from classical to quantum. It marks the boundary between regions where classical physics and quantum mechanics are most applicable. This point is significant because it helps us understand how particles behave differently at the quantum level compared to the classical level.


What are the key differences between quantum mechanics and physics?

Quantum mechanics is a branch of physics that deals with the behavior of particles at the smallest scales, while physics is a broader field that encompasses the study of matter, energy, and their interactions at all scales. Quantum mechanics introduces concepts such as superposition and entanglement that are not present in classical physics, and it has led to the development of technologies like quantum computing. Physics, on the other hand, includes classical mechanics, electromagnetism, thermodynamics, and other branches that do not rely on quantum principles.


What is the difference between quantum physics and physics?

Nothing. Quantum is a branch of physics


Who created Quantum Mechanics and is it true that it is replacing the old physics?

Quantum Mechanics "replaced" Classical Mechanics in particle physics in mid-1930s.


What has the author Franco Battaglia written?

Franco Battaglia has written: 'Notes in classical and quantum physics' -- subject(s): Quantum theory, Physics


What is the definition of classical physics?

Classical physics is the physics without considering quantum mechanics. This is the type of physics practiced by for example Newton (you might also come across the term Newtonian physics). General relativity is also a classical theory. The distinction is often used because quantum mechanics changed quite a bit in many fields of physics, so the term 'classical physics' allows for a clear distinction. The opposite of classical physics would be quantum physics.


What are the names of physics?

Physics Branches: Classical Mechanics Mathematical Physics Classical Electrodynamics Quantum Mechanics Thermodynamics and Statistical Mechanics Condensed Matter Physics Nuclear Physics Quantum Field theory Non-Linear Dynamics Astronomy and Astrophysics General Theory of Relativity and Cosmology