Yes
Adjacent nucleosides in DNA are joined by phosphodiester bonds, which are covalent bonds between the phosphate group of one nucleoside and the sugar group of another nucleoside. These bonds create the sugar-phosphate backbone of the DNA strand.
Deoxyribose is connected to the phosphate group by phosphodiester bonds. These bonds form between the 3' hydroxyl group of the deoxyribose sugar and the phosphate group, linking adjacent nucleotides together in a DNA strand and creating the sugar-phosphate backbone essential for DNA structure.
Phosphodiester bonds hold the sugar and phosphate groups together in DNA and RNA molecules. These bonds form between the phosphate group of one nucleotide and the 3'-hydroxyl group of the sugar in the adjacent nucleotide.
Water will be attracted to a phosphate group due to the presence of polar covalent bonds within the phosphate group. The oxygen atoms in the phosphate group will form hydrogen bonds with water molecules, leading to an attraction between the two molecules.
DNA is made up of nucleotides, which consist of a nitrogenous base (adenine, thymine, guanine, or cytosine), a sugar molecule (deoxyribose), and a phosphate group. These nucleotides are joined together by covalent bonds between the sugar of one nucleotide and the phosphate group of another, forming a sugar-phosphate backbone.
Molecule
The backbone of DNA is made up of repeating units of sugar (deoxyribose) and phosphate molecules. These molecules are connected by covalent bonds to form a sugar-phosphate backbone, with the nitrogenous bases extending from it.
The sugar-phosphate backbone in DNA is held together by covalent bonds called phosphodiester bonds. These bonds link the 5' phosphate group of one nucleotide to the 3' hydroxyl group of the next nucleotide, forming a strong sugar-phosphate backbone that gives DNA its structural stability.
In DNA, the phosphate groups are connected by phosphodiester bonds, which are covalent bonds formed between a phosphate group and two adjacent nucleotides in the DNA backbone.
The nucleotides are linked by peptide bonds - covalent bonds between the carbon in the carboxyl group and the nitrogen in the amino group. The double helix is formed by hydrogen bonds between the hydrogens and oxygens of two strands of nucleotides.
The energy of the ATP molecule is mainly stored in the high-energy bonds of the outermost phosphate group, known as the gamma phosphate group. When this phosphate group is hydrolyzed, releasing energy, it forms ADP (adenosine diphosphate) and inorganic phosphate.
It is an unstable bond.30.7Kj per mole of ATP is produced.