No, an electric current does not affect weight.
A magnet cannot stop an electric current, but it can influence the flow of the current. Moving a magnet near a wire carrying an electric current can induce a voltage in the wire, which can affect the behavior of the current.
Yes, an electric current can affect a compass needle because it creates a magnetic field. When the electric current flows through a wire, it generates a magnetic field around the wire, which can deflect the compass needle and change its direction.
Components such as resistors, capacitors, and inductors can affect electric current by either impeding the flow (resistors), storing charge (capacitors), or inducing voltage (inductors). These components change the overall characteristics of the circuit, affecting the amount of current that flows through it.
Increase or decrease in potential results in the change in direction of the flow of electric current.
Electric current, magnetic field intensity, length of the conductor, angle between the electric current and magnetic field
Increasing the electric field magnitude along a wire will increase the current density. This is because a higher electric field will cause more electrons to move through the wire, resulting in a higher flow of electric current.
Yes. An electric current is surrounded by a magnetic field, and this will affect a compass. Please note that this is more noticeable in the case of DC - for AC, the current changes all the time, it changes very quickly, and the AVERAGE value of the magnetic field is zero.
it doesn't, the one with the highest resistance does
Resistance in an electric circuit is the opposition to the flow of electric current. It is measured in ohms. Resistance affects the flow of current by reducing it, as higher resistance leads to lower current flow. This relationship is described by Ohm's Law, which states that current is inversely proportional to resistance in a circuit.
The magnetic effect of electric current is known as electromagnetic effect. It is observed that when a compass is brought near a current carrying conductor the needle of compass gets deflected because of flow of electricity. This shows that electric current produces a magnetic effect.
Adding a resistor to an electric circuit reduces the current flow by impeding the flow of electrons. The resistor increases the resistance in the circuit, which in turn decreases the amount of current that can pass through.
How does the length of a wire affect its resistance in an electric circuit? What is the relationship between the voltage and current in a resistor? How does the number of coils in an electromagnet affect its magnetic strength? What is the effect of changing the type of material in a circuit (e.g. copper vs. aluminum) on the flow of electric current?