Yes, it is normal.
Increased density and temperature.
The volume of gas depends on the temperature, pressure, and number of gas particles present. These factors affect the amount of space the gas particles occupy.
It increases proportionally. This means that if you double the ammount of particles, the pressure doubles.
Yes, it is normal.
The combined gas equation is used to calculate the behaviour of gas under different temperature, pressure and number of particles. PV = nRT Where P is pressure V is volume n is the number of moles T is the temperature in Kelvin and R is the Ideal Gas Constant. If P is in kPa and V is in dm3 then R = 8.31.
At a constant temperature, the volume and the pressure are inversely proportional, that it, the greater the volume, the lesser the pressure on the gas, and viceversa.
At a constant temperature, the volume and the pressure are inversely proportional, that it, the greater the volume, the lesser the pressure on the gas, and viceversa.
Pressure IS the force of colliding particles, so the more the higher.
Gas pressure is affected by factors such as temperature, volume, and the number of gas particles present. For instance, increasing the temperature of a gas will increase its pressure, while decreasing the volume of a gas will increase its pressure as well. Additionally, having more gas particles in a given space will lead to higher pressure.
The pressure is now higher.
The mass of the gass, the volume of the container holding the gas, and the temperature of the gass. If you have a container of gas, the greater the mass of the gas, the more molecules there are in the container, and this leads to greater pressure. If you have a fixed mass of gas, changing the volume of the container holding the gas will cause the pressure to change. Increasing the volume of the container decreases the pressure. Decreasing the volume of the container increases the pressure. If you increase the temperature of a gas without changing its mass or volume, pressure increases.
When the number of gas particles at constant pressure increases, the volume of the gas will increase due to the additional collisions between the gas particles and the walls of the container. This causes the gas to take up more space to accommodate the increased number of particles.