No.
The half-life of a radioactive isotope is the amount of time it takes for one-half of the radioactive isotope to decay. The half-life of a specific radioactive isotope is constant; it is unaffected by conditions and is independent of the initial amount of that isotope.
Each (unstable) isotope has a distinctive half-life.
Isotope A is more radioactive because it has a shorter half-life, indicating a faster rate of decay. A shorter half-life means that more of the isotope will undergo radioactive decay in a given time period compared to an isotope with a longer half-life.
No, the size of a radioactive sample does not affect its half-life. The half-life is a characteristic property of a radioactive isotope, defined as the time it takes for half of the radioactive atoms in a sample to decay. This property is intrinsic to the isotope itself and remains constant regardless of the amount of material present. Thus, whether you have a small or large sample, the half-life will remain the same.
The half-life is a fixed period of time: the average time it will take for one of every two atoms to decay to another isotope or element. So no matter how much of a given radioactive isotope that you start with, only one-half of it will still be that isotope after a single half-life period. Likewise only half of that remaining material will be the same isotope after another half-life period. Of course, some of the atoms will be decaying all the time, so the half-life is only a convenient way to define the quantity at any given time.
The half-life is a fixed period of time: the average time it will take for one of every two atoms to decay to another isotope or element. So no matter how much of a given radioactive isotope that you start with, only one-half of it will still be that isotope after a single half-life period. Likewise only half of that remaining material will be the same isotope after another half-life period. Of course, some of the atoms will be decaying all the time, so the half-life is only a convenient way to define the quantity at any given time.
No, the half-life of a radioactive isotope is a constant property of that particular isotope and does not change as it decays. The half-life is defined as the time it takes for half of the atoms in a sample to decay. Once set, the half-life remains constant regardless of how many atoms have decayed.
The half life of an isotope refers to the rate at which a radioactive isotope undergoes radioactive decay. Specifically, it is the amount of time it takes for half of a given sample of a radioactive isotope to decay.
The half-life is a fixed period of time: the average time it will take for one of every two atoms to decay to another isotope or element. So no matter how much of a given radioactive isotope that you start with, only one-half of it will still be that isotope after a single half-life period. Likewise only half of that remaining material will be the same isotope after another half-life period. Of course, some of the atoms will be decaying all the time, so the half-life is only a convenient way to define the quantity at any given time.
The half life of uranium is not one day. For an isotope with the half life or one day, after 3 days: the quantity remained is 12,5 %.
To find the percentage of Berkelium-60 remaining after 480 years, we first determine how many half-lives have passed. Since the half-life is 120 years, 480 years corresponds to 4 half-lives (480/120 = 4). After each half-life, the quantity of the isotope is halved: after 1 half-life, 50% remains; after 2, 25%; after 3, 12.5%; and after 4, 6.25%. Thus, you would expect to find 6.25% of the original quantity of Berkelium-60 in the object.
At the end of a second half-life, one-fourth (25%) of the original isotope remains. This is because each half-life halves the amount of the isotope present.