answersLogoWhite

0

Yes.

Positive ions (sodium) move across the membrane.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Natural Sciences

What molecules cause polarization and depolarization?

In excitable cells such as neurons and muscle cells, the movement of ions across the cell membrane causes polarization and depolarization. Specifically, during polarization, the cell interior becomes more negative due to the influx of potassium ions. In contrast, depolarization involves the influx of sodium ions, leading to a reversal of the membrane potential towards a more positive charge.


The process of depolarization and repolarization is called?

The process of depolarization and repolarization is called an action potential. During depolarization, the cell's membrane potential becomes more positive, while during repolarization, the membrane potential returns to its resting state.


What event follows after the depolarization of a neuron?

After depolarization, the neuron undergoes repolarization, during which the cell's membrane potential returns to resting state. This is followed by hyperpolarization, where the membrane potential briefly becomes more negative than the resting state, before returning to its baseline. Finally, the neuron enters a refractory period, during which it is temporarily unable to generate another action potential.


What causes cell membrane to depolarize?

Cell membrane depolarization is caused by the influx of positively charged ions, such as sodium ions, through ion channels in the membrane. This influx of positive charge reduces the voltage difference across the membrane, leading to depolarization.


How does the membrane potential affect the permeability of a neurons cell membrane?

The membrane potential influences the permeability of a neuron's cell membrane by affecting the opening and closing of ion channels. When the membrane potential changes, such as during depolarization, voltage-gated ion channels open, allowing ions like sodium (Na+) to flow into the cell, increasing permeability. Conversely, during hyperpolarization, channels may close, reducing permeability to certain ions. This dynamic alteration of permeability is crucial for generating action potentials and transmitting signals in the nervous system.

Related Questions

What molecules cause polarization and depolarization?

In excitable cells such as neurons and muscle cells, the movement of ions across the cell membrane causes polarization and depolarization. Specifically, during polarization, the cell interior becomes more negative due to the influx of potassium ions. In contrast, depolarization involves the influx of sodium ions, leading to a reversal of the membrane potential towards a more positive charge.


The process of depolarization and repolarization is called?

The process of depolarization and repolarization is called an action potential. During depolarization, the cell's membrane potential becomes more positive, while during repolarization, the membrane potential returns to its resting state.


During depolarization of action potential the outer part of axon becomes?

Negative


Which is the first step in a neuron production of an action potential?

Depolarization is the first event in action potential. During depolarization, the sodium gates open and the membrane depolarizes.


What event follows after the depolarization of a neuron?

After depolarization, the neuron undergoes repolarization, during which the cell's membrane potential returns to resting state. This is followed by hyperpolarization, where the membrane potential briefly becomes more negative than the resting state, before returning to its baseline. Finally, the neuron enters a refractory period, during which it is temporarily unable to generate another action potential.


What does the electrical charge on the inside of the axon become when depolarization occurs?

During depolarization, sodium ions rush into the axon, making the inside negative, and the outside positive.


What causes cell membrane to depolarize?

Cell membrane depolarization is caused by the influx of positively charged ions, such as sodium ions, through ion channels in the membrane. This influx of positive charge reduces the voltage difference across the membrane, leading to depolarization.


How does the membrane potential affect the permeability of a neurons cell membrane?

The membrane potential influences the permeability of a neuron's cell membrane by affecting the opening and closing of ion channels. When the membrane potential changes, such as during depolarization, voltage-gated ion channels open, allowing ions like sodium (Na+) to flow into the cell, increasing permeability. Conversely, during hyperpolarization, channels may close, reducing permeability to certain ions. This dynamic alteration of permeability is crucial for generating action potentials and transmitting signals in the nervous system.


What ion is rapidly moving into the cell during the depolarization period of an action potential?

Sodium.A positive ion (cation) that enters the cell (influx) rapidly when the membrane threshold is reached and the voltage gated sodium channels open.This occurs during the rising phase of an action potential, i.e. membrane depolarization beyond the threshold for activation.


What two molecules are necessary for the action potential?

Sodium and potassium ions are the two molecules necessary for the action potential in neurons. Sodium ions flow into the cell during depolarization, while potassium ions flow out of the cell during repolarization. This ion movement across the cell membrane is essential for the generation and propagation of the action potential.


During the action potential?

During the action potential, there is a depolarization phase where the cell membrane potential becomes less negative, followed by repolarization where it returns to its resting state. This involves the influx of sodium ions and efflux of potassium ions through voltage-gated channels. The action potential is a brief electrical signal that travels along the membrane of a neuron or muscle cell.


What are the major positive electrolytes responsible for depolarization?

The major positive electrolytes responsible for depolarization of a cell are sodium (Na+) and calcium (Ca2+). These ions enter the cell during the depolarization phase of an action potential, leading to a change in membrane potential and initiation of an electrical signal.